Enter a problem...
Precalculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Add to both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Apply the product rule to .
Step 3.4.2.1.2
Raise to the power of .
Step 3.4.2.1.3
Multiply the exponents in .
Step 3.4.2.1.3.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.3.2
Cancel the common factor of .
Step 3.4.2.1.3.2.1
Cancel the common factor.
Step 3.4.2.1.3.2.2
Rewrite the expression.
Step 3.4.2.1.4
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Multiply by .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Multiply by .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.5
Divide each term in by and simplify.
Step 3.5.1
Divide each term in by .
Step 3.5.2
Simplify the left side.
Step 3.5.2.1
Cancel the common factor of .
Step 3.5.2.1.1
Cancel the common factor.
Step 3.5.2.1.2
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Combine the numerators over the common denominator.
Step 5.2.4
Simplify each term.
Step 5.2.4.1
Use the Binomial Theorem.
Step 5.2.4.2
Simplify each term.
Step 5.2.4.2.1
Apply the product rule to .
Step 5.2.4.2.2
Raise to the power of .
Step 5.2.4.2.3
Rewrite as .
Step 5.2.4.2.3.1
Use to rewrite as .
Step 5.2.4.2.3.2
Apply the power rule and multiply exponents, .
Step 5.2.4.2.3.3
Combine and .
Step 5.2.4.2.3.4
Cancel the common factor of .
Step 5.2.4.2.3.4.1
Cancel the common factor.
Step 5.2.4.2.3.4.2
Rewrite the expression.
Step 5.2.4.2.3.5
Simplify.
Step 5.2.4.2.4
Apply the product rule to .
Step 5.2.4.2.5
Raise to the power of .
Step 5.2.4.2.6
Rewrite as .
Step 5.2.4.2.7
Multiply by .
Step 5.2.4.2.8
Multiply by .
Step 5.2.4.2.9
Multiply by .
Step 5.2.4.2.10
Raise to the power of .
Step 5.2.4.2.11
Multiply by .
Step 5.2.4.2.12
Raise to the power of .
Step 5.2.4.3
Rewrite as .
Step 5.2.4.4
Expand using the FOIL Method.
Step 5.2.4.4.1
Apply the distributive property.
Step 5.2.4.4.2
Apply the distributive property.
Step 5.2.4.4.3
Apply the distributive property.
Step 5.2.4.5
Simplify and combine like terms.
Step 5.2.4.5.1
Simplify each term.
Step 5.2.4.5.1.1
Multiply .
Step 5.2.4.5.1.1.1
Multiply by .
Step 5.2.4.5.1.1.2
Raise to the power of .
Step 5.2.4.5.1.1.3
Raise to the power of .
Step 5.2.4.5.1.1.4
Use the power rule to combine exponents.
Step 5.2.4.5.1.1.5
Add and .
Step 5.2.4.5.1.2
Rewrite as .
Step 5.2.4.5.1.3
Multiply by .
Step 5.2.4.5.1.4
Multiply by .
Step 5.2.4.5.1.5
Multiply by .
Step 5.2.4.5.2
Subtract from .
Step 5.2.4.6
Apply the distributive property.
Step 5.2.4.7
Simplify.
Step 5.2.4.7.1
Multiply by .
Step 5.2.4.7.2
Multiply by .
Step 5.2.4.7.3
Multiply by .
Step 5.2.4.8
Apply the distributive property.
Step 5.2.4.9
Multiply by .
Step 5.2.4.10
Multiply by .
Step 5.2.5
Simplify terms.
Step 5.2.5.1
Combine the opposite terms in .
Step 5.2.5.1.1
Add and .
Step 5.2.5.1.2
Add and .
Step 5.2.5.1.3
Subtract from .
Step 5.2.5.1.4
Add and .
Step 5.2.5.1.5
Add and .
Step 5.2.5.1.6
Add and .
Step 5.2.5.2
Subtract from .
Step 5.2.5.3
Combine the opposite terms in .
Step 5.2.5.3.1
Add and .
Step 5.2.5.3.2
Add and .
Step 5.2.5.4
Cancel the common factor of .
Step 5.2.5.4.1
Cancel the common factor.
Step 5.2.5.4.2
Divide by .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Remove parentheses.
Step 5.3.4
Simplify each term.
Step 5.3.4.1
Combine the numerators over the common denominator.
Step 5.3.4.2
Rewrite as .
Step 5.3.4.2.1
Factor the perfect power out of .
Step 5.3.4.2.2
Factor the perfect power out of .
Step 5.3.4.2.3
Rearrange the fraction .
Step 5.3.4.3
Pull terms out from under the radical.
Step 5.3.4.4
Make each term match the terms from the binomial theorem formula.
Step 5.3.4.5
Factor using the binomial theorem.
Step 5.3.4.6
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4.7
Apply the distributive property.
Step 5.3.4.8
Combine and .
Step 5.3.4.9
Combine and .
Step 5.3.4.10
Apply the distributive property.
Step 5.3.4.11
Cancel the common factor of .
Step 5.3.4.11.1
Cancel the common factor.
Step 5.3.4.11.2
Rewrite the expression.
Step 5.3.4.12
Cancel the common factor of .
Step 5.3.4.12.1
Cancel the common factor.
Step 5.3.4.12.2
Rewrite the expression.
Step 5.3.5
Combine the opposite terms in .
Step 5.3.5.1
Subtract from .
Step 5.3.5.2
Add and .
Step 5.4
Since and , then is the inverse of .