Enter a problem...
Precalculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Multiply both sides by .
Step 3.3
Simplify.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Cancel the common factor of .
Step 3.3.1.1.1.1
Cancel the common factor.
Step 3.3.1.1.1.2
Rewrite the expression.
Step 3.3.1.1.2
Reorder and .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Move to the left of .
Step 3.4
Solve for .
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Divide each term in by and simplify.
Step 3.4.2.1
Divide each term in by .
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of .
Step 3.4.2.2.1.1
Cancel the common factor.
Step 3.4.2.2.1.2
Divide by .
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Cancel the common factor of and .
Step 3.4.2.3.1.1.1
Factor out of .
Step 3.4.2.3.1.1.2
Cancel the common factors.
Step 3.4.2.3.1.1.2.1
Factor out of .
Step 3.4.2.3.1.1.2.2
Cancel the common factor.
Step 3.4.2.3.1.1.2.3
Rewrite the expression.
Step 3.4.2.3.1.2
Move the negative in front of the fraction.
Step 3.4.2.3.1.3
Dividing two negative values results in a positive value.
Step 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4.4
Simplify .
Step 3.4.4.1
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.4.4.2.1
Multiply by .
Step 3.4.4.2.2
Multiply by .
Step 3.4.4.3
Combine the numerators over the common denominator.
Step 3.4.4.4
Multiply by .
Step 3.4.4.5
Rewrite as .
Step 3.4.4.5.1
Factor the perfect power out of .
Step 3.4.4.5.2
Factor the perfect power out of .
Step 3.4.4.5.3
Rearrange the fraction .
Step 3.4.4.6
Pull terms out from under the radical.
Step 3.4.4.7
Combine and .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Cancel the common factor of .
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.2
Cancel the common factor.
Step 5.2.3.1.3
Rewrite the expression.
Step 5.2.3.2
Apply the distributive property.
Step 5.2.3.3
Multiply by .
Step 5.2.3.4
Multiply by .
Step 5.2.3.5
Add and .
Step 5.2.3.6
Add and .
Step 5.2.3.7
Rewrite as .
Step 5.2.3.8
Pull terms out from under the radical, assuming real numbers.
Step 5.2.4
Cancel the common factor of .
Step 5.2.4.1
Cancel the common factor.
Step 5.2.4.2
Divide by .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Use to rewrite as .
Step 5.3.3.2
Apply the product rule to .
Step 5.3.3.3
Simplify the numerator.
Step 5.3.3.3.1
Multiply the exponents in .
Step 5.3.3.3.1.1
Apply the power rule and multiply exponents, .
Step 5.3.3.3.1.2
Cancel the common factor of .
Step 5.3.3.3.1.2.1
Cancel the common factor.
Step 5.3.3.3.1.2.2
Rewrite the expression.
Step 5.3.3.3.2
Simplify.
Step 5.3.3.4
Raise to the power of .
Step 5.3.3.5
Cancel the common factor of .
Step 5.3.3.5.1
Factor out of .
Step 5.3.3.5.2
Cancel the common factor.
Step 5.3.3.5.3
Rewrite the expression.
Step 5.3.3.6
Apply the distributive property.
Step 5.3.3.7
Multiply by .
Step 5.3.3.8
Multiply by .
Step 5.3.3.9
Subtract from .
Step 5.3.3.10
Add and .
Step 5.3.4
Cancel the common factor of .
Step 5.3.4.1
Cancel the common factor.
Step 5.3.4.2
Divide by .
Step 5.4
Since and , then is the inverse of .