Enter a problem...
Precalculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Multiply the equation by .
Step 3.2
Simplify the left side.
Step 3.2.1
Apply the distributive property.
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Factor out of .
Step 3.3.1.1.1
Factor out of .
Step 3.3.1.1.2
Factor out of .
Step 3.3.1.1.3
Factor out of .
Step 3.3.1.2
Factor out of .
Step 3.3.1.2.1
Factor out of .
Step 3.3.1.2.2
Factor out of .
Step 3.3.1.2.3
Factor out of .
Step 3.3.1.3
Multiply by .
Step 3.3.1.4
Cancel the common factor of and .
Step 3.3.1.4.1
Factor out of .
Step 3.3.1.4.2
Cancel the common factors.
Step 3.3.1.4.2.1
Cancel the common factor.
Step 3.3.1.4.2.2
Rewrite the expression.
Step 3.3.1.5
Cancel the common factor of .
Step 3.3.1.5.1
Cancel the common factor.
Step 3.3.1.5.2
Divide by .
Step 3.3.1.6
Apply the distributive property.
Step 3.3.1.7
Multiply.
Step 3.3.1.7.1
Multiply by .
Step 3.3.1.7.2
Multiply by .
Step 3.4
Solve for .
Step 3.4.1
Add to both sides of the equation.
Step 3.4.2
Add to both sides of the equation.
Step 3.4.3
Factor out of .
Step 3.4.3.1
Factor out of .
Step 3.4.3.2
Factor out of .
Step 3.4.3.3
Factor out of .
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Combine the numerators over the common denominator.
Step 3.4.4.3.2
Factor out of .
Step 3.4.4.3.2.1
Factor out of .
Step 3.4.4.3.2.2
Factor out of .
Step 3.4.4.3.3
Factor out of .
Step 3.4.4.3.4
Rewrite as .
Step 3.4.4.3.5
Factor out of .
Step 3.4.4.3.6
Rewrite negatives.
Step 3.4.4.3.6.1
Rewrite as .
Step 3.4.4.3.6.2
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify with factoring out.
Step 5.2.3.1
Remove parentheses.
Step 5.2.3.2
Factor out of .
Step 5.2.3.2.1
Factor out of .
Step 5.2.3.2.2
Factor out of .
Step 5.2.3.2.3
Factor out of .
Step 5.2.3.3
Factor out of .
Step 5.2.3.3.1
Factor out of .
Step 5.2.3.3.2
Factor out of .
Step 5.2.3.3.3
Factor out of .
Step 5.2.3.4
Factor out of .
Step 5.2.3.4.1
Factor out of .
Step 5.2.3.4.2
Factor out of .
Step 5.2.3.4.3
Factor out of .
Step 5.2.3.5
Factor out of .
Step 5.2.3.5.1
Factor out of .
Step 5.2.3.5.2
Factor out of .
Step 5.2.3.5.3
Factor out of .
Step 5.2.4
Simplify the numerator.
Step 5.2.4.1
Write as a fraction with a common denominator.
Step 5.2.4.2
Combine the numerators over the common denominator.
Step 5.2.4.3
Rewrite in a factored form.
Step 5.2.4.3.1
Apply the distributive property.
Step 5.2.4.3.2
Multiply by .
Step 5.2.4.3.3
Multiply by .
Step 5.2.4.3.4
Apply the distributive property.
Step 5.2.4.3.5
Multiply by .
Step 5.2.4.3.6
Multiply by .
Step 5.2.4.3.7
Subtract from .
Step 5.2.4.3.8
Add and .
Step 5.2.4.3.9
Add and .
Step 5.2.4.4
Move the negative in front of the fraction.
Step 5.2.4.5
Remove unnecessary parentheses.
Step 5.2.4.6
Combine exponents.
Step 5.2.4.6.1
Factor out negative.
Step 5.2.4.6.2
Combine and .
Step 5.2.4.6.3
Multiply by .
Step 5.2.4.7
Reduce the expression by cancelling the common factors.
Step 5.2.4.7.1
Factor out of .
Step 5.2.4.7.2
Cancel the common factor.
Step 5.2.4.7.3
Rewrite the expression.
Step 5.2.5
Simplify the denominator.
Step 5.2.5.1
Cancel the common factor of .
Step 5.2.5.1.1
Factor out of .
Step 5.2.5.1.2
Cancel the common factor.
Step 5.2.5.1.3
Rewrite the expression.
Step 5.2.5.2
Combine and .
Step 5.2.5.3
Multiply by .
Step 5.2.5.4
To write as a fraction with a common denominator, multiply by .
Step 5.2.5.5
Combine and .
Step 5.2.5.6
Combine the numerators over the common denominator.
Step 5.2.5.7
Rewrite in a factored form.
Step 5.2.5.7.1
Factor out of .
Step 5.2.5.7.1.1
Factor out of .
Step 5.2.5.7.1.2
Factor out of .
Step 5.2.5.7.1.3
Factor out of .
Step 5.2.5.7.2
Apply the distributive property.
Step 5.2.5.7.3
Multiply by .
Step 5.2.5.7.4
Multiply by .
Step 5.2.5.7.5
Apply the distributive property.
Step 5.2.5.7.6
Multiply by .
Step 5.2.5.7.7
Multiply by .
Step 5.2.5.7.8
Add and .
Step 5.2.5.7.9
Add and .
Step 5.2.5.7.10
Add and .
Step 5.2.5.8
Multiply by .
Step 5.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.7
Cancel the common factor of .
Step 5.2.7.1
Move the leading negative in into the numerator.
Step 5.2.7.2
Factor out of .
Step 5.2.7.3
Cancel the common factor.
Step 5.2.7.4
Rewrite the expression.
Step 5.2.8
Move the negative in front of the fraction.
Step 5.2.9
Apply the distributive property.
Step 5.2.10
Multiply .
Step 5.2.10.1
Multiply by .
Step 5.2.10.2
Combine and .
Step 5.2.10.3
Combine and .
Step 5.2.10.4
Raise to the power of .
Step 5.2.10.5
Raise to the power of .
Step 5.2.10.6
Use the power rule to combine exponents.
Step 5.2.10.7
Add and .
Step 5.2.11
Multiply .
Step 5.2.11.1
Multiply by .
Step 5.2.11.2
Combine and .
Step 5.2.12
Combine the numerators over the common denominator.
Step 5.2.13
Factor out of .
Step 5.2.13.1
Factor out of .
Step 5.2.13.2
Factor out of .
Step 5.2.13.3
Factor out of .
Step 5.2.14
Cancel the common factor of and .
Step 5.2.14.1
Factor out of .
Step 5.2.14.2
Rewrite as .
Step 5.2.14.3
Factor out of .
Step 5.2.14.4
Rewrite as .
Step 5.2.14.5
Cancel the common factor.
Step 5.2.14.6
Divide by .
Step 5.2.15
Simplify the expression.
Step 5.2.15.1
Move to the left of .
Step 5.2.15.2
Rewrite as .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Factor out of .
Step 5.3.3.1.1
Factor out of .
Step 5.3.3.1.2
Factor out of .
Step 5.3.3.1.3
Factor out of .
Step 5.3.3.2
Multiply .
Step 5.3.3.2.1
Multiply by .
Step 5.3.3.2.2
Combine and .
Step 5.3.3.2.3
Multiply by .
Step 5.3.3.3
To write as a fraction with a common denominator, multiply by .
Step 5.3.3.4
Combine the numerators over the common denominator.
Step 5.3.3.5
Rewrite in a factored form.
Step 5.3.3.5.1
Factor out of .
Step 5.3.3.5.1.1
Factor out of .
Step 5.3.3.5.1.2
Factor out of .
Step 5.3.3.5.2
Apply the distributive property.
Step 5.3.3.5.3
Multiply by .
Step 5.3.3.5.4
Subtract from .
Step 5.3.3.5.5
Add and .
Step 5.3.3.5.6
Add and .
Step 5.3.3.5.7
Multiply by .
Step 5.3.4
Simplify the denominator.
Step 5.3.4.1
Factor out of .
Step 5.3.4.1.1
Reorder and .
Step 5.3.4.1.2
Factor out of .
Step 5.3.4.1.3
Factor out of .
Step 5.3.4.1.4
Factor out of .
Step 5.3.4.2
Multiply by .
Step 5.3.4.3
Multiply .
Step 5.3.4.3.1
Combine and .
Step 5.3.4.3.2
Multiply by .
Step 5.3.4.4
Move the negative in front of the fraction.
Step 5.3.4.5
To write as a fraction with a common denominator, multiply by .
Step 5.3.4.6
Combine the numerators over the common denominator.
Step 5.3.4.7
Reorder terms.
Step 5.3.4.8
Rewrite in a factored form.
Step 5.3.4.8.1
Factor out of .
Step 5.3.4.8.1.1
Factor out of .
Step 5.3.4.8.1.2
Factor out of .
Step 5.3.4.8.2
Apply the distributive property.
Step 5.3.4.8.3
Multiply by .
Step 5.3.4.8.4
Subtract from .
Step 5.3.4.8.5
Subtract from .
Step 5.3.4.8.6
Subtract from .
Step 5.3.4.9
Multiply by .
Step 5.3.4.10
Move the negative in front of the fraction.
Step 5.3.4.11
Combine exponents.
Step 5.3.4.11.1
Factor out negative.
Step 5.3.4.11.2
Combine and .
Step 5.3.4.11.3
Multiply by .
Step 5.3.4.12
Move the negative in front of the fraction.
Step 5.3.5
Combine and .
Step 5.3.6
Multiply by .
Step 5.3.7
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.8
Cancel the common factor of .
Step 5.3.8.1
Factor out of .
Step 5.3.8.2
Cancel the common factor.
Step 5.3.8.3
Rewrite the expression.
Step 5.3.9
Cancel the common factor of .
Step 5.3.9.1
Cancel the common factor.
Step 5.3.9.2
Rewrite the expression.
Step 5.4
Since and , then is the inverse of .