Precalculus Examples

Find the Inverse f(x) = square root of (x+3)/(x-2)
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply the equation by .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Apply the distributive property.
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify .
Tap for more steps...
Step 3.3.1.1
Rewrite as .
Step 3.3.1.2
Multiply by .
Step 3.3.1.3
Combine and simplify the denominator.
Tap for more steps...
Step 3.3.1.3.1
Multiply by .
Step 3.3.1.3.2
Raise to the power of .
Step 3.3.1.3.3
Raise to the power of .
Step 3.3.1.3.4
Use the power rule to combine exponents.
Step 3.3.1.3.5
Add and .
Step 3.3.1.3.6
Rewrite as .
Tap for more steps...
Step 3.3.1.3.6.1
Use to rewrite as .
Step 3.3.1.3.6.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3.6.3
Combine and .
Step 3.3.1.3.6.4
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.3.6.4.1
Cancel the common factor.
Step 3.3.1.3.6.4.2
Rewrite the expression.
Step 3.3.1.3.6.5
Simplify.
Step 3.3.1.4
Combine using the product rule for radicals.
Step 3.3.1.5
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.5.1
Cancel the common factor.
Step 3.3.1.5.2
Rewrite the expression.
Step 3.4
Solve for .
Tap for more steps...
Step 3.4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.4.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.4.3
Simplify each side of the equation.
Tap for more steps...
Step 3.4.3.1
Use to rewrite as .
Step 3.4.3.2
Simplify the left side.
Tap for more steps...
Step 3.4.3.2.1
Simplify .
Tap for more steps...
Step 3.4.3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.4.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.4.3.2.1.1.2.1
Cancel the common factor.
Step 3.4.3.2.1.1.2.2
Rewrite the expression.
Step 3.4.3.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.2.1.2.1
Apply the distributive property.
Step 3.4.3.2.1.2.2
Apply the distributive property.
Step 3.4.3.2.1.2.3
Apply the distributive property.
Step 3.4.3.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.4.3.2.1.3.1
Simplify each term.
Tap for more steps...
Step 3.4.3.2.1.3.1.1
Multiply by .
Step 3.4.3.2.1.3.1.2
Move to the left of .
Step 3.4.3.2.1.3.1.3
Multiply by .
Step 3.4.3.2.1.3.2
Add and .
Step 3.4.3.2.1.4
Simplify.
Step 3.4.3.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.3.1
Simplify .
Tap for more steps...
Step 3.4.3.3.1.1
Rewrite as .
Step 3.4.3.3.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.3.1.2.1
Apply the distributive property.
Step 3.4.3.3.1.2.2
Apply the distributive property.
Step 3.4.3.3.1.2.3
Apply the distributive property.
Step 3.4.3.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.4.3.3.1.3.1
Simplify each term.
Tap for more steps...
Step 3.4.3.3.1.3.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.3.1.3.1.1.1
Move .
Step 3.4.3.3.1.3.1.1.2
Multiply by .
Step 3.4.3.3.1.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.3.1.3.1.2.1
Move .
Step 3.4.3.3.1.3.1.2.2
Multiply by .
Step 3.4.3.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 3.4.3.3.1.3.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.3.1.3.1.4.1
Move .
Step 3.4.3.3.1.3.1.4.2
Multiply by .
Step 3.4.3.3.1.3.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.3.1.3.1.5.1
Move .
Step 3.4.3.3.1.3.1.5.2
Multiply by .
Step 3.4.3.3.1.3.1.6
Rewrite using the commutative property of multiplication.
Step 3.4.3.3.1.3.1.7
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.3.1.3.1.7.1
Move .
Step 3.4.3.3.1.3.1.7.2
Multiply by .
Step 3.4.3.3.1.3.1.8
Multiply by .
Step 3.4.3.3.1.3.2
Subtract from .
Tap for more steps...
Step 3.4.3.3.1.3.2.1
Move .
Step 3.4.3.3.1.3.2.2
Subtract from .
Step 3.4.4
Solve for .
Tap for more steps...
Step 3.4.4.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.4.4.1.1
Subtract from both sides of the equation.
Step 3.4.4.1.2
Add to both sides of the equation.
Step 3.4.4.2
Subtract from both sides of the equation.
Step 3.4.4.3
Use the quadratic formula to find the solutions.
Step 3.4.4.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4.4.5
Simplify.
Tap for more steps...
Step 3.4.4.5.1
Simplify the numerator.
Tap for more steps...
Step 3.4.4.5.1.1
Apply the distributive property.
Step 3.4.4.5.1.2
Multiply by .
Step 3.4.4.5.1.3
Multiply by .
Step 3.4.4.5.1.4
Rewrite as .
Step 3.4.4.5.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.5.1.5.1
Apply the distributive property.
Step 3.4.4.5.1.5.2
Apply the distributive property.
Step 3.4.4.5.1.5.3
Apply the distributive property.
Step 3.4.4.5.1.6
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.5.1.6.1
Simplify each term.
Tap for more steps...
Step 3.4.4.5.1.6.1.1
Multiply by .
Step 3.4.4.5.1.6.1.2
Multiply by .
Step 3.4.4.5.1.6.1.3
Multiply by .
Step 3.4.4.5.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.5.1.6.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.5.1.6.1.5.1
Move .
Step 3.4.4.5.1.6.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.5.1.6.1.5.3
Add and .
Step 3.4.4.5.1.6.1.6
Multiply by .
Step 3.4.4.5.1.6.2
Add and .
Step 3.4.4.5.1.7
Apply the distributive property.
Step 3.4.4.5.1.8
Multiply by .
Step 3.4.4.5.1.9
Multiply by .
Step 3.4.4.5.1.10
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.5.1.10.1
Apply the distributive property.
Step 3.4.4.5.1.10.2
Apply the distributive property.
Step 3.4.4.5.1.10.3
Apply the distributive property.
Step 3.4.4.5.1.11
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.5.1.11.1
Simplify each term.
Tap for more steps...
Step 3.4.4.5.1.11.1.1
Multiply by .
Step 3.4.4.5.1.11.1.2
Multiply by .
Step 3.4.4.5.1.11.1.3
Multiply by .
Step 3.4.4.5.1.11.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.5.1.11.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.5.1.11.1.5.1
Move .
Step 3.4.4.5.1.11.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.5.1.11.1.5.3
Add and .
Step 3.4.4.5.1.11.1.6
Multiply by .
Step 3.4.4.5.1.11.2
Subtract from .
Step 3.4.4.5.1.12
Add and .
Step 3.4.4.5.1.13
Subtract from .
Step 3.4.4.5.1.14
Add and .
Step 3.4.4.5.1.15
Subtract from .
Step 3.4.4.5.1.16
Add and .
Step 3.4.4.5.1.17
Rewrite as .
Step 3.4.4.5.1.18
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.4.5.2
Simplify the denominator.
Tap for more steps...
Step 3.4.4.5.2.1
Rewrite as .
Step 3.4.4.5.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.4.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.4.4.6.1
Simplify the numerator.
Tap for more steps...
Step 3.4.4.6.1.1
Apply the distributive property.
Step 3.4.4.6.1.2
Multiply by .
Step 3.4.4.6.1.3
Multiply by .
Step 3.4.4.6.1.4
Rewrite as .
Step 3.4.4.6.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.6.1.5.1
Apply the distributive property.
Step 3.4.4.6.1.5.2
Apply the distributive property.
Step 3.4.4.6.1.5.3
Apply the distributive property.
Step 3.4.4.6.1.6
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.6.1.6.1
Simplify each term.
Tap for more steps...
Step 3.4.4.6.1.6.1.1
Multiply by .
Step 3.4.4.6.1.6.1.2
Multiply by .
Step 3.4.4.6.1.6.1.3
Multiply by .
Step 3.4.4.6.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.6.1.6.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.6.1.6.1.5.1
Move .
Step 3.4.4.6.1.6.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.6.1.6.1.5.3
Add and .
Step 3.4.4.6.1.6.1.6
Multiply by .
Step 3.4.4.6.1.6.2
Add and .
Step 3.4.4.6.1.7
Apply the distributive property.
Step 3.4.4.6.1.8
Multiply by .
Step 3.4.4.6.1.9
Multiply by .
Step 3.4.4.6.1.10
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.6.1.10.1
Apply the distributive property.
Step 3.4.4.6.1.10.2
Apply the distributive property.
Step 3.4.4.6.1.10.3
Apply the distributive property.
Step 3.4.4.6.1.11
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.6.1.11.1
Simplify each term.
Tap for more steps...
Step 3.4.4.6.1.11.1.1
Multiply by .
Step 3.4.4.6.1.11.1.2
Multiply by .
Step 3.4.4.6.1.11.1.3
Multiply by .
Step 3.4.4.6.1.11.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.6.1.11.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.6.1.11.1.5.1
Move .
Step 3.4.4.6.1.11.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.6.1.11.1.5.3
Add and .
Step 3.4.4.6.1.11.1.6
Multiply by .
Step 3.4.4.6.1.11.2
Subtract from .
Step 3.4.4.6.1.12
Add and .
Step 3.4.4.6.1.13
Subtract from .
Step 3.4.4.6.1.14
Add and .
Step 3.4.4.6.1.15
Subtract from .
Step 3.4.4.6.1.16
Add and .
Step 3.4.4.6.1.17
Rewrite as .
Step 3.4.4.6.1.18
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.4.6.2
Simplify the denominator.
Tap for more steps...
Step 3.4.4.6.2.1
Rewrite as .
Step 3.4.4.6.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.4.6.3
Change the to .
Step 3.4.4.6.4
Simplify the numerator.
Tap for more steps...
Step 3.4.4.6.4.1
Add and .
Step 3.4.4.6.4.2
Factor out of .
Tap for more steps...
Step 3.4.4.6.4.2.1
Factor out of .
Step 3.4.4.6.4.2.2
Factor out of .
Step 3.4.4.6.4.2.3
Factor out of .
Step 3.4.4.6.4.3
Rewrite as .
Step 3.4.4.6.4.4
Reorder and .
Step 3.4.4.6.4.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.4.6.5
Cancel the common factor of and .
Tap for more steps...
Step 3.4.4.6.5.1
Factor out of .
Step 3.4.4.6.5.2
Cancel the common factor.
Step 3.4.4.6.5.3
Rewrite the expression.
Step 3.4.4.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.4.4.7.1
Simplify the numerator.
Tap for more steps...
Step 3.4.4.7.1.1
Apply the distributive property.
Step 3.4.4.7.1.2
Multiply by .
Step 3.4.4.7.1.3
Multiply by .
Step 3.4.4.7.1.4
Rewrite as .
Step 3.4.4.7.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.7.1.5.1
Apply the distributive property.
Step 3.4.4.7.1.5.2
Apply the distributive property.
Step 3.4.4.7.1.5.3
Apply the distributive property.
Step 3.4.4.7.1.6
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.7.1.6.1
Simplify each term.
Tap for more steps...
Step 3.4.4.7.1.6.1.1
Multiply by .
Step 3.4.4.7.1.6.1.2
Multiply by .
Step 3.4.4.7.1.6.1.3
Multiply by .
Step 3.4.4.7.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.7.1.6.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.7.1.6.1.5.1
Move .
Step 3.4.4.7.1.6.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.7.1.6.1.5.3
Add and .
Step 3.4.4.7.1.6.1.6
Multiply by .
Step 3.4.4.7.1.6.2
Add and .
Step 3.4.4.7.1.7
Apply the distributive property.
Step 3.4.4.7.1.8
Multiply by .
Step 3.4.4.7.1.9
Multiply by .
Step 3.4.4.7.1.10
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.4.7.1.10.1
Apply the distributive property.
Step 3.4.4.7.1.10.2
Apply the distributive property.
Step 3.4.4.7.1.10.3
Apply the distributive property.
Step 3.4.4.7.1.11
Simplify and combine like terms.
Tap for more steps...
Step 3.4.4.7.1.11.1
Simplify each term.
Tap for more steps...
Step 3.4.4.7.1.11.1.1
Multiply by .
Step 3.4.4.7.1.11.1.2
Multiply by .
Step 3.4.4.7.1.11.1.3
Multiply by .
Step 3.4.4.7.1.11.1.4
Rewrite using the commutative property of multiplication.
Step 3.4.4.7.1.11.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.4.7.1.11.1.5.1
Move .
Step 3.4.4.7.1.11.1.5.2
Use the power rule to combine exponents.
Step 3.4.4.7.1.11.1.5.3
Add and .
Step 3.4.4.7.1.11.1.6
Multiply by .
Step 3.4.4.7.1.11.2
Subtract from .
Step 3.4.4.7.1.12
Add and .
Step 3.4.4.7.1.13
Subtract from .
Step 3.4.4.7.1.14
Add and .
Step 3.4.4.7.1.15
Subtract from .
Step 3.4.4.7.1.16
Add and .
Step 3.4.4.7.1.17
Rewrite as .
Step 3.4.4.7.1.18
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.4.7.2
Simplify the denominator.
Tap for more steps...
Step 3.4.4.7.2.1
Rewrite as .
Step 3.4.4.7.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.4.7.3
Change the to .
Step 3.4.4.7.4
Simplify the numerator.
Tap for more steps...
Step 3.4.4.7.4.1
Subtract from .
Step 3.4.4.7.4.2
Factor out of .
Tap for more steps...
Step 3.4.4.7.4.2.1
Factor out of .
Step 3.4.4.7.4.2.2
Factor out of .
Step 3.4.4.7.4.2.3
Factor out of .
Step 3.4.4.7.5
Cancel the common factor of .
Tap for more steps...
Step 3.4.4.7.5.1
Cancel the common factor.
Step 3.4.4.7.5.2
Rewrite the expression.
Step 3.4.4.7.6
Factor out of .
Step 3.4.4.7.7
Rewrite as .
Step 3.4.4.7.8
Factor out of .
Step 3.4.4.7.9
Rewrite as .
Step 3.4.4.7.10
Move the negative in front of the fraction.
Step 3.4.4.8
The final answer is the combination of both solutions.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 5.2
Find the range of .
Tap for more steps...
Step 5.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 5.3
Find the domain of the inverse.
Tap for more steps...
Step 5.3.1
Find the domain of .
Tap for more steps...
Step 5.3.1.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 5.3.2
Find the domain of .
Tap for more steps...
Step 5.3.2.1
Set the denominator in equal to to find where the expression is undefined.
Step 5.3.2.2
Solve for .
Tap for more steps...
Step 5.3.2.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.3.2.2.2
Set equal to and solve for .
Tap for more steps...
Step 5.3.2.2.2.1
Set equal to .
Step 5.3.2.2.2.2
Subtract from both sides of the equation.
Step 5.3.2.2.3
Set equal to and solve for .
Tap for more steps...
Step 5.3.2.2.3.1
Set equal to .
Step 5.3.2.2.3.2
Solve for .
Tap for more steps...
Step 5.3.2.2.3.2.1
Subtract from both sides of the equation.
Step 5.3.2.2.3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.2.2.3.2.2.1
Divide each term in by .
Step 5.3.2.2.3.2.2.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.2.3.2.2.2.1
Dividing two negative values results in a positive value.
Step 5.3.2.2.3.2.2.2.2
Divide by .
Step 5.3.2.2.3.2.2.3
Simplify the right side.
Tap for more steps...
Step 5.3.2.2.3.2.2.3.1
Divide by .
Step 5.3.2.2.4
The final solution is all the values that make true.
Step 5.3.2.3
The domain is all values of that make the expression defined.
Step 5.3.3
Find the union of .
Tap for more steps...
Step 5.3.3.1
The union consists of all of the elements that are contained in each interval.
Step 5.4
Since the domain of is not equal to the range of , then is not an inverse of .
There is no inverse
There is no inverse
Step 6