Enter a problem...
Precalculus Examples
Step 1
The minimum of a quadratic function occurs at . If is positive, the minimum value of the function is .
occurs at
Step 2
Step 2.1
Substitute in the values of and .
Step 2.2
Remove parentheses.
Step 2.3
Cancel the common factor of and .
Step 2.3.1
Factor out of .
Step 2.3.2
Cancel the common factors.
Step 2.3.2.1
Factor out of .
Step 2.3.2.2
Cancel the common factor.
Step 2.3.2.3
Rewrite the expression.
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Use the power rule to distribute the exponent.
Step 3.2.1.1.1
Apply the product rule to .
Step 3.2.1.1.2
Apply the product rule to .
Step 3.2.1.2
Raise to the power of .
Step 3.2.1.3
Multiply by .
Step 3.2.1.4
Raise to the power of .
Step 3.2.1.5
Raise to the power of .
Step 3.2.1.6
Cancel the common factor of .
Step 3.2.1.6.1
Factor out of .
Step 3.2.1.6.2
Cancel the common factor.
Step 3.2.1.6.3
Rewrite the expression.
Step 3.2.1.7
Cancel the common factor of .
Step 3.2.1.7.1
Move the leading negative in into the numerator.
Step 3.2.1.7.2
Factor out of .
Step 3.2.1.7.3
Cancel the common factor.
Step 3.2.1.7.4
Rewrite the expression.
Step 3.2.1.8
Multiply by .
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Write as a fraction with denominator .
Step 3.2.2.2
Multiply by .
Step 3.2.2.3
Multiply by .
Step 3.2.2.4
Write as a fraction with denominator .
Step 3.2.2.5
Multiply by .
Step 3.2.2.6
Multiply by .
Step 3.2.3
Combine the numerators over the common denominator.
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply by .
Step 3.2.4.2
Multiply by .
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract from .
Step 3.2.5.2
Add and .
Step 3.2.5.3
Move the negative in front of the fraction.
Step 3.2.6
The final answer is .
Step 4
Use the and values to find where the minimum occurs.
Step 5