Precalculus Examples

Find the Maximum/Minimum Value f(x)=-x^2+6x-10
f(x)=-x2+6x-10
Step 1
The maximum of a quadratic function occurs at x=-b2a. If a is negative, the maximum value of the function is f(-b2a).
fmaxx=ax2+bx+c occurs at x=-b2a
Step 2
Find the value of x=-b2a.
Tap for more steps...
Step 2.1
Substitute in the values of a and b.
x=-62(-1)
Step 2.2
Remove parentheses.
x=-62(-1)
Step 2.3
Simplify -62(-1).
Tap for more steps...
Step 2.3.1
Cancel the common factor of 6 and 2.
Tap for more steps...
Step 2.3.1.1
Factor 2 out of 6.
x=-232-1
Step 2.3.1.2
Move the negative one from the denominator of 3-1.
x=-(-13)
x=-(-13)
Step 2.3.2
Multiply -(-13).
Tap for more steps...
Step 2.3.2.1
Multiply -1 by 3.
x=--3
Step 2.3.2.2
Multiply -1 by -3.
x=3
x=3
x=3
x=3
Step 3
Evaluate f(3).
Tap for more steps...
Step 3.1
Replace the variable x with 3 in the expression.
f(3)=-(3)2+6(3)-10
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Raise 3 to the power of 2.
f(3)=-19+6(3)-10
Step 3.2.1.2
Multiply -1 by 9.
f(3)=-9+6(3)-10
Step 3.2.1.3
Multiply 6 by 3.
f(3)=-9+18-10
f(3)=-9+18-10
Step 3.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 3.2.2.1
Add -9 and 18.
f(3)=9-10
Step 3.2.2.2
Subtract 10 from 9.
f(3)=-1
f(3)=-1
Step 3.2.3
The final answer is -1.
-1
-1
-1
Step 4
Use the x and y values to find where the maximum occurs.
(3,-1)
Step 5
 [x2  12  π  xdx ]