Enter a problem...
Precalculus Examples
, ,
Step 1
Step 1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Cancel the common factor of and .
Step 1.2.3.1.1.1
Factor out of .
Step 1.2.3.1.1.2
Cancel the common factors.
Step 1.2.3.1.1.2.1
Factor out of .
Step 1.2.3.1.1.2.2
Cancel the common factor.
Step 1.2.3.1.1.2.3
Rewrite the expression.
Step 1.2.3.1.2
Cancel the common factor of and .
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factors.
Step 1.2.3.1.2.2.1
Factor out of .
Step 1.2.3.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.2.2.3
Rewrite the expression.
Step 1.2.3.1.2.2.4
Divide by .
Step 1.2.3.1.3
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Cancel the common factor of .
Step 2.2.1.1.2.1.1
Factor out of .
Step 2.2.1.1.2.1.2
Cancel the common factor.
Step 2.2.1.1.2.1.3
Rewrite the expression.
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.1.2.4
Cancel the common factor of .
Step 2.2.1.1.2.4.1
Move the leading negative in into the numerator.
Step 2.2.1.1.2.4.2
Cancel the common factor.
Step 2.2.1.1.2.4.3
Rewrite the expression.
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Add and .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply .
Step 2.4.1.1.2.1.1
Combine and .
Step 2.4.1.1.2.1.2
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply .
Step 2.4.1.1.2.3.1
Multiply by .
Step 2.4.1.1.2.3.2
Combine and .
Step 2.4.1.1.2.3.3
Multiply by .
Step 2.4.1.1.3
Move the negative in front of the fraction.
Step 2.4.1.2
Add and .
Step 2.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.4.1.4
Simplify terms.
Step 2.4.1.4.1
Combine and .
Step 2.4.1.4.2
Combine the numerators over the common denominator.
Step 2.4.1.5
Simplify each term.
Step 2.4.1.5.1
Simplify the numerator.
Step 2.4.1.5.1.1
Factor out of .
Step 2.4.1.5.1.1.1
Factor out of .
Step 2.4.1.5.1.1.2
Factor out of .
Step 2.4.1.5.1.1.3
Factor out of .
Step 2.4.1.5.1.2
Add and .
Step 2.4.1.5.1.3
Multiply by .
Step 2.4.1.5.2
Move the negative in front of the fraction.
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Add to both sides of the equation.
Step 3.1.3
To write as a fraction with a common denominator, multiply by .
Step 3.1.4
Combine and .
Step 3.1.5
Combine the numerators over the common denominator.
Step 3.1.6
Simplify the numerator.
Step 3.1.6.1
Multiply by .
Step 3.1.6.2
Subtract from .
Step 3.1.7
Move the negative in front of the fraction.
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Simplify each term.
Step 3.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.2.3.1.2
Move the negative in front of the fraction.
Step 3.2.3.1.3
Multiply .
Step 3.2.3.1.3.1
Multiply by .
Step 3.2.3.1.3.2
Multiply by .
Step 3.2.3.1.3.3
Multiply by .
Step 3.2.3.1.3.4
Multiply by .
Step 3.2.3.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 3.2.3.1.5
Move the negative in front of the fraction.
Step 3.2.3.1.6
Multiply .
Step 3.2.3.1.6.1
Multiply by .
Step 3.2.3.1.6.2
Multiply by .
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Combine and .
Step 4.2.1.1.3
Multiply .
Step 4.2.1.1.3.1
Multiply by .
Step 4.2.1.1.3.2
Combine and .
Step 4.2.1.1.3.3
Multiply by .
Step 4.2.1.1.4
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Add and .
Step 4.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.7
Simplify terms.
Step 4.2.1.7.1
Combine and .
Step 4.2.1.7.2
Combine the numerators over the common denominator.
Step 4.2.1.8
Simplify each term.
Step 4.2.1.8.1
Simplify the numerator.
Step 4.2.1.8.1.1
Factor out of .
Step 4.2.1.8.1.1.1
Factor out of .
Step 4.2.1.8.1.1.2
Factor out of .
Step 4.2.1.8.1.1.3
Factor out of .
Step 4.2.1.8.1.2
Multiply by .
Step 4.2.1.8.1.3
Add and .
Step 4.2.1.8.2
Move to the left of .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Find the common denominator.
Step 4.4.1.1.1
Multiply by .
Step 4.4.1.1.2
Multiply by .
Step 4.4.1.1.3
Write as a fraction with denominator .
Step 4.4.1.1.4
Multiply by .
Step 4.4.1.1.5
Multiply by .
Step 4.4.1.1.6
Multiply by .
Step 4.4.1.2
Combine the numerators over the common denominator.
Step 4.4.1.3
Simplify each term.
Step 4.4.1.3.1
Multiply by .
Step 4.4.1.3.2
Apply the distributive property.
Step 4.4.1.3.3
Multiply .
Step 4.4.1.3.3.1
Multiply by .
Step 4.4.1.3.3.2
Multiply by .
Step 4.4.1.3.4
Apply the distributive property.
Step 4.4.1.3.5
Cancel the common factor of .
Step 4.4.1.3.5.1
Move the leading negative in into the numerator.
Step 4.4.1.3.5.2
Cancel the common factor.
Step 4.4.1.3.5.3
Rewrite the expression.
Step 4.4.1.3.6
Cancel the common factor of .
Step 4.4.1.3.6.1
Factor out of .
Step 4.4.1.3.6.2
Cancel the common factor.
Step 4.4.1.3.6.3
Rewrite the expression.
Step 4.4.1.4
Subtract from .
Step 4.4.1.5
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.6
Simplify terms.
Step 4.4.1.6.1
Combine and .
Step 4.4.1.6.2
Combine the numerators over the common denominator.
Step 4.4.1.6.3
Simplify each term.
Step 4.4.1.6.3.1
Simplify the numerator.
Step 4.4.1.6.3.1.1
Factor out of .
Step 4.4.1.6.3.1.1.1
Factor out of .
Step 4.4.1.6.3.1.1.2
Factor out of .
Step 4.4.1.6.3.1.1.3
Factor out of .
Step 4.4.1.6.3.1.2
Multiply by .
Step 4.4.1.6.3.1.3
Subtract from .
Step 4.4.1.6.3.1.4
Multiply by .
Step 4.4.1.6.3.2
Move the negative in front of the fraction.
Step 4.4.1.7
Simplify the numerator.
Step 4.4.1.7.1
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.7.2
Combine and .
Step 4.4.1.7.3
Combine the numerators over the common denominator.
Step 4.4.1.7.4
Multiply by .
Step 4.4.1.8
Multiply the numerator by the reciprocal of the denominator.
Step 4.4.1.9
Multiply .
Step 4.4.1.9.1
Multiply by .
Step 4.4.1.9.2
Multiply by .
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.1.3
Combine and .
Step 5.1.4
Combine the numerators over the common denominator.
Step 5.1.5
Simplify the numerator.
Step 5.1.5.1
Multiply by .
Step 5.1.5.2
Subtract from .
Step 5.1.6
Move the negative in front of the fraction.
Step 5.2
Multiply both sides of the equation by .
Step 5.3
Simplify both sides of the equation.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Simplify .
Step 5.3.1.1.1
Cancel the common factor of .
Step 5.3.1.1.1.1
Cancel the common factor.
Step 5.3.1.1.1.2
Rewrite the expression.
Step 5.3.1.1.2
Cancel the common factor of .
Step 5.3.1.1.2.1
Factor out of .
Step 5.3.1.1.2.2
Cancel the common factor.
Step 5.3.1.1.2.3
Rewrite the expression.
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Simplify .
Step 5.3.2.1.1
Cancel the common factor of .
Step 5.3.2.1.1.1
Move the leading negative in into the numerator.
Step 5.3.2.1.1.2
Factor out of .
Step 5.3.2.1.1.3
Cancel the common factor.
Step 5.3.2.1.1.4
Rewrite the expression.
Step 5.3.2.1.2
Cancel the common factor of .
Step 5.3.2.1.2.1
Factor out of .
Step 5.3.2.1.2.2
Cancel the common factor.
Step 5.3.2.1.2.3
Rewrite the expression.
Step 5.3.2.1.3
Multiply by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Cancel the common factor of and .
Step 6.2.1.1.1
Rewrite as .
Step 6.2.1.1.2
Factor out of .
Step 6.2.1.1.3
Factor out of .
Step 6.2.1.1.4
Reorder terms.
Step 6.2.1.1.5
Factor out of .
Step 6.2.1.1.6
Cancel the common factors.
Step 6.2.1.1.6.1
Factor out of .
Step 6.2.1.1.6.2
Cancel the common factor.
Step 6.2.1.1.6.3
Rewrite the expression.
Step 6.2.1.2
Simplify the numerator.
Step 6.2.1.2.1
Multiply by .
Step 6.2.1.2.2
Subtract from .
Step 6.2.1.3
Simplify the expression.
Step 6.2.1.3.1
Multiply by .
Step 6.2.1.3.2
Divide by .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Simplify each term.
Step 6.4.1.1.1
Cancel the common factor of and .
Step 6.4.1.1.1.1
Factor out of .
Step 6.4.1.1.1.2
Cancel the common factors.
Step 6.4.1.1.1.2.1
Factor out of .
Step 6.4.1.1.1.2.2
Cancel the common factor.
Step 6.4.1.1.1.2.3
Rewrite the expression.
Step 6.4.1.1.2
Multiply by .
Step 6.4.1.1.3
Move the negative in front of the fraction.
Step 6.4.1.1.4
Multiply .
Step 6.4.1.1.4.1
Multiply by .
Step 6.4.1.1.4.2
Multiply by .
Step 6.4.1.2
Combine fractions.
Step 6.4.1.2.1
Combine the numerators over the common denominator.
Step 6.4.1.2.2
Simplify the expression.
Step 6.4.1.2.2.1
Add and .
Step 6.4.1.2.2.2
Divide by .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: