Enter a problem...
Precalculus Examples
,
Step 1
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Multiply the exponents in .
Step 2.2.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2
Multiply by .
Step 3
Step 3.1
Factor the left side of the equation.
Step 3.1.1
Factor out of .
Step 3.1.1.1
Raise to the power of .
Step 3.1.1.2
Factor out of .
Step 3.1.1.3
Factor out of .
Step 3.1.1.4
Factor out of .
Step 3.1.1.5
Multiply by .
Step 3.1.2
Rewrite as .
Step 3.1.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 3.1.4
Factor.
Step 3.1.4.1
Simplify.
Step 3.1.4.1.1
One to any power is one.
Step 3.1.4.1.2
Multiply by .
Step 3.1.4.2
Remove unnecessary parentheses.
Step 3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3
Set equal to .
Step 3.4
Set equal to and solve for .
Step 3.4.1
Set equal to .
Step 3.4.2
Solve for .
Step 3.4.2.1
Subtract from both sides of the equation.
Step 3.4.2.2
Divide each term in by and simplify.
Step 3.4.2.2.1
Divide each term in by .
Step 3.4.2.2.2
Simplify the left side.
Step 3.4.2.2.2.1
Dividing two negative values results in a positive value.
Step 3.4.2.2.2.2
Divide by .
Step 3.4.2.2.3
Simplify the right side.
Step 3.4.2.2.3.1
Divide by .
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Step 3.5.2.1
Use the quadratic formula to find the solutions.
Step 3.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5.2.3
Simplify.
Step 3.5.2.3.1
Simplify the numerator.
Step 3.5.2.3.1.1
One to any power is one.
Step 3.5.2.3.1.2
Multiply .
Step 3.5.2.3.1.2.1
Multiply by .
Step 3.5.2.3.1.2.2
Multiply by .
Step 3.5.2.3.1.3
Subtract from .
Step 3.5.2.3.1.4
Rewrite as .
Step 3.5.2.3.1.5
Rewrite as .
Step 3.5.2.3.1.6
Rewrite as .
Step 3.5.2.3.2
Multiply by .
Step 3.5.2.4
Simplify the expression to solve for the portion of the .
Step 3.5.2.4.1
Simplify the numerator.
Step 3.5.2.4.1.1
One to any power is one.
Step 3.5.2.4.1.2
Multiply .
Step 3.5.2.4.1.2.1
Multiply by .
Step 3.5.2.4.1.2.2
Multiply by .
Step 3.5.2.4.1.3
Subtract from .
Step 3.5.2.4.1.4
Rewrite as .
Step 3.5.2.4.1.5
Rewrite as .
Step 3.5.2.4.1.6
Rewrite as .
Step 3.5.2.4.2
Multiply by .
Step 3.5.2.4.3
Change the to .
Step 3.5.2.4.4
Rewrite as .
Step 3.5.2.4.5
Factor out of .
Step 3.5.2.4.6
Factor out of .
Step 3.5.2.4.7
Move the negative in front of the fraction.
Step 3.5.2.5
Simplify the expression to solve for the portion of the .
Step 3.5.2.5.1
Simplify the numerator.
Step 3.5.2.5.1.1
One to any power is one.
Step 3.5.2.5.1.2
Multiply .
Step 3.5.2.5.1.2.1
Multiply by .
Step 3.5.2.5.1.2.2
Multiply by .
Step 3.5.2.5.1.3
Subtract from .
Step 3.5.2.5.1.4
Rewrite as .
Step 3.5.2.5.1.5
Rewrite as .
Step 3.5.2.5.1.6
Rewrite as .
Step 3.5.2.5.2
Multiply by .
Step 3.5.2.5.3
Change the to .
Step 3.5.2.5.4
Rewrite as .
Step 3.5.2.5.5
Factor out of .
Step 3.5.2.5.6
Factor out of .
Step 3.5.2.5.7
Move the negative in front of the fraction.
Step 3.5.2.6
The final answer is the combination of both solutions.
Step 3.6
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Raising to any positive power yields .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
One to any power is one.
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Raising to any positive power yields .
Step 7
Step 7.1
Replace all occurrences of in with .
Step 7.2
Simplify the right side.
Step 7.2.1
One to any power is one.
Step 8
Step 8.1
Replace all occurrences of in with .
Step 8.2
Simplify the right side.
Step 8.2.1
Simplify .
Step 8.2.1.1
Use the power rule to distribute the exponent.
Step 8.2.1.1.1
Apply the product rule to .
Step 8.2.1.1.2
Apply the product rule to .
Step 8.2.1.2
Simplify the expression.
Step 8.2.1.2.1
Raise to the power of .
Step 8.2.1.2.2
Multiply by .
Step 8.2.1.2.3
Raise to the power of .
Step 8.2.1.2.4
Rewrite as .
Step 8.2.1.3
Expand using the FOIL Method.
Step 8.2.1.3.1
Apply the distributive property.
Step 8.2.1.3.2
Apply the distributive property.
Step 8.2.1.3.3
Apply the distributive property.
Step 8.2.1.4
Simplify and combine like terms.
Step 8.2.1.4.1
Simplify each term.
Step 8.2.1.4.1.1
Multiply by .
Step 8.2.1.4.1.2
Multiply by .
Step 8.2.1.4.1.3
Multiply by .
Step 8.2.1.4.1.4
Multiply .
Step 8.2.1.4.1.4.1
Multiply by .
Step 8.2.1.4.1.4.2
Multiply by .
Step 8.2.1.4.1.4.3
Raise to the power of .
Step 8.2.1.4.1.4.4
Raise to the power of .
Step 8.2.1.4.1.4.5
Use the power rule to combine exponents.
Step 8.2.1.4.1.4.6
Add and .
Step 8.2.1.4.1.4.7
Raise to the power of .
Step 8.2.1.4.1.4.8
Raise to the power of .
Step 8.2.1.4.1.4.9
Use the power rule to combine exponents.
Step 8.2.1.4.1.4.10
Add and .
Step 8.2.1.4.1.5
Rewrite as .
Step 8.2.1.4.1.5.1
Use to rewrite as .
Step 8.2.1.4.1.5.2
Apply the power rule and multiply exponents, .
Step 8.2.1.4.1.5.3
Combine and .
Step 8.2.1.4.1.5.4
Cancel the common factor of .
Step 8.2.1.4.1.5.4.1
Cancel the common factor.
Step 8.2.1.4.1.5.4.2
Rewrite the expression.
Step 8.2.1.4.1.5.5
Evaluate the exponent.
Step 8.2.1.4.1.6
Rewrite as .
Step 8.2.1.4.1.7
Multiply by .
Step 8.2.1.4.2
Subtract from .
Step 8.2.1.4.3
Subtract from .
Step 8.2.1.5
Reorder and .
Step 8.2.1.6
Cancel the common factor of and .
Step 8.2.1.6.1
Factor out of .
Step 8.2.1.6.2
Factor out of .
Step 8.2.1.6.3
Factor out of .
Step 8.2.1.6.4
Cancel the common factors.
Step 8.2.1.6.4.1
Factor out of .
Step 8.2.1.6.4.2
Cancel the common factor.
Step 8.2.1.6.4.3
Rewrite the expression.
Step 8.2.1.7
Rewrite as .
Step 8.2.1.8
Factor out of .
Step 8.2.1.9
Factor out of .
Step 8.2.1.10
Move the negative in front of the fraction.
Step 9
Step 9.1
Replace all occurrences of in with .
Step 9.2
Simplify the right side.
Step 9.2.1
Raising to any positive power yields .
Step 10
Step 10.1
Replace all occurrences of in with .
Step 10.2
Simplify the right side.
Step 10.2.1
One to any power is one.
Step 11
Step 11.1
Replace all occurrences of in with .
Step 11.2
Simplify the right side.
Step 11.2.1
Simplify .
Step 11.2.1.1
Use the power rule to distribute the exponent.
Step 11.2.1.1.1
Apply the product rule to .
Step 11.2.1.1.2
Apply the product rule to .
Step 11.2.1.2
Simplify the expression.
Step 11.2.1.2.1
Raise to the power of .
Step 11.2.1.2.2
Multiply by .
Step 11.2.1.2.3
Raise to the power of .
Step 11.2.1.2.4
Rewrite as .
Step 11.2.1.3
Expand using the FOIL Method.
Step 11.2.1.3.1
Apply the distributive property.
Step 11.2.1.3.2
Apply the distributive property.
Step 11.2.1.3.3
Apply the distributive property.
Step 11.2.1.4
Simplify and combine like terms.
Step 11.2.1.4.1
Simplify each term.
Step 11.2.1.4.1.1
Multiply by .
Step 11.2.1.4.1.2
Multiply by .
Step 11.2.1.4.1.3
Multiply by .
Step 11.2.1.4.1.4
Multiply .
Step 11.2.1.4.1.4.1
Multiply by .
Step 11.2.1.4.1.4.2
Multiply by .
Step 11.2.1.4.1.4.3
Raise to the power of .
Step 11.2.1.4.1.4.4
Raise to the power of .
Step 11.2.1.4.1.4.5
Use the power rule to combine exponents.
Step 11.2.1.4.1.4.6
Add and .
Step 11.2.1.4.1.4.7
Raise to the power of .
Step 11.2.1.4.1.4.8
Raise to the power of .
Step 11.2.1.4.1.4.9
Use the power rule to combine exponents.
Step 11.2.1.4.1.4.10
Add and .
Step 11.2.1.4.1.5
Rewrite as .
Step 11.2.1.4.1.5.1
Use to rewrite as .
Step 11.2.1.4.1.5.2
Apply the power rule and multiply exponents, .
Step 11.2.1.4.1.5.3
Combine and .
Step 11.2.1.4.1.5.4
Cancel the common factor of .
Step 11.2.1.4.1.5.4.1
Cancel the common factor.
Step 11.2.1.4.1.5.4.2
Rewrite the expression.
Step 11.2.1.4.1.5.5
Evaluate the exponent.
Step 11.2.1.4.1.6
Rewrite as .
Step 11.2.1.4.1.7
Multiply by .
Step 11.2.1.4.2
Subtract from .
Step 11.2.1.4.3
Subtract from .
Step 11.2.1.5
Reorder and .
Step 11.2.1.6
Cancel the common factor of and .
Step 11.2.1.6.1
Factor out of .
Step 11.2.1.6.2
Factor out of .
Step 11.2.1.6.3
Factor out of .
Step 11.2.1.6.4
Cancel the common factors.
Step 11.2.1.6.4.1
Factor out of .
Step 11.2.1.6.4.2
Cancel the common factor.
Step 11.2.1.6.4.3
Rewrite the expression.
Step 11.2.1.7
Rewrite as .
Step 11.2.1.8
Factor out of .
Step 11.2.1.9
Factor out of .
Step 11.2.1.10
Move the negative in front of the fraction.
Step 12
Step 12.1
Replace all occurrences of in with .
Step 12.2
Simplify the right side.
Step 12.2.1
Simplify .
Step 12.2.1.1
Use the power rule to distribute the exponent.
Step 12.2.1.1.1
Apply the product rule to .
Step 12.2.1.1.2
Apply the product rule to .
Step 12.2.1.2
Simplify the expression.
Step 12.2.1.2.1
Raise to the power of .
Step 12.2.1.2.2
Multiply by .
Step 12.2.1.2.3
Raise to the power of .
Step 12.2.1.2.4
Rewrite as .
Step 12.2.1.3
Expand using the FOIL Method.
Step 12.2.1.3.1
Apply the distributive property.
Step 12.2.1.3.2
Apply the distributive property.
Step 12.2.1.3.3
Apply the distributive property.
Step 12.2.1.4
Simplify and combine like terms.
Step 12.2.1.4.1
Simplify each term.
Step 12.2.1.4.1.1
Multiply by .
Step 12.2.1.4.1.2
Multiply by .
Step 12.2.1.4.1.3
Multiply by .
Step 12.2.1.4.1.4
Multiply .
Step 12.2.1.4.1.4.1
Raise to the power of .
Step 12.2.1.4.1.4.2
Raise to the power of .
Step 12.2.1.4.1.4.3
Use the power rule to combine exponents.
Step 12.2.1.4.1.4.4
Add and .
Step 12.2.1.4.1.4.5
Raise to the power of .
Step 12.2.1.4.1.4.6
Raise to the power of .
Step 12.2.1.4.1.4.7
Use the power rule to combine exponents.
Step 12.2.1.4.1.4.8
Add and .
Step 12.2.1.4.1.5
Rewrite as .
Step 12.2.1.4.1.6
Rewrite as .
Step 12.2.1.4.1.6.1
Use to rewrite as .
Step 12.2.1.4.1.6.2
Apply the power rule and multiply exponents, .
Step 12.2.1.4.1.6.3
Combine and .
Step 12.2.1.4.1.6.4
Cancel the common factor of .
Step 12.2.1.4.1.6.4.1
Cancel the common factor.
Step 12.2.1.4.1.6.4.2
Rewrite the expression.
Step 12.2.1.4.1.6.5
Evaluate the exponent.
Step 12.2.1.4.1.7
Multiply by .
Step 12.2.1.4.2
Subtract from .
Step 12.2.1.4.3
Add and .
Step 12.2.1.5
Reorder and .
Step 12.2.1.6
Cancel the common factor of and .
Step 12.2.1.6.1
Factor out of .
Step 12.2.1.6.2
Factor out of .
Step 12.2.1.6.3
Factor out of .
Step 12.2.1.6.4
Cancel the common factors.
Step 12.2.1.6.4.1
Factor out of .
Step 12.2.1.6.4.2
Cancel the common factor.
Step 12.2.1.6.4.3
Rewrite the expression.
Step 12.2.1.7
Rewrite as .
Step 12.2.1.8
Factor out of .
Step 12.2.1.9
Factor out of .
Step 12.2.1.10
Move the negative in front of the fraction.
Step 13
List all of the solutions.
Step 14