Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide by .
Step 1.2.3.1.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Combine and .
Step 2.2.1.1.3.1.2.3
Multiply by .
Step 2.2.1.1.3.1.3
Move the negative in front of the fraction.
Step 2.2.1.1.3.1.4
Multiply .
Step 2.2.1.1.3.1.4.1
Multiply by .
Step 2.2.1.1.3.1.4.2
Combine and .
Step 2.2.1.1.3.1.4.3
Multiply by .
Step 2.2.1.1.3.1.5
Move the negative in front of the fraction.
Step 2.2.1.1.3.1.6
Multiply .
Step 2.2.1.1.3.1.6.1
Multiply by .
Step 2.2.1.1.3.1.6.2
Multiply by .
Step 2.2.1.1.3.1.6.3
Multiply by .
Step 2.2.1.1.3.1.6.4
Multiply by .
Step 2.2.1.1.3.1.6.5
Raise to the power of .
Step 2.2.1.1.3.1.6.6
Raise to the power of .
Step 2.2.1.1.3.1.6.7
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.6.8
Add and .
Step 2.2.1.1.3.1.6.9
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Simplify each term.
Step 2.2.1.1.4.1
Cancel the common factor of .
Step 2.2.1.1.4.1.1
Factor out of .
Step 2.2.1.1.4.1.2
Factor out of .
Step 2.2.1.1.4.1.3
Cancel the common factor.
Step 2.2.1.1.4.1.4
Rewrite the expression.
Step 2.2.1.1.4.2
Rewrite as .
Step 2.2.1.1.5
Apply the distributive property.
Step 2.2.1.1.6
Simplify.
Step 2.2.1.1.6.1
Multiply by .
Step 2.2.1.1.6.2
Cancel the common factor of .
Step 2.2.1.1.6.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.6.2.2
Factor out of .
Step 2.2.1.1.6.2.3
Cancel the common factor.
Step 2.2.1.1.6.2.4
Rewrite the expression.
Step 2.2.1.1.6.3
Multiply by .
Step 2.2.1.1.6.4
Cancel the common factor of .
Step 2.2.1.1.6.4.1
Cancel the common factor.
Step 2.2.1.1.6.4.2
Rewrite the expression.
Step 2.2.1.2
Add and .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Combine the opposite terms in .
Step 3.2.1
Subtract from .
Step 3.2.2
Add and .
Step 3.3
Factor out of .
Step 3.3.1
Factor out of .
Step 3.3.2
Factor out of .
Step 3.3.3
Factor out of .
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to .
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Add to both sides of the equation.
Step 3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Cancel the common factor of and .
Step 4.2.1.1.1.1
Factor out of .
Step 4.2.1.1.1.2
Cancel the common factors.
Step 4.2.1.1.1.2.1
Factor out of .
Step 4.2.1.1.1.2.2
Cancel the common factor.
Step 4.2.1.1.1.2.3
Rewrite the expression.
Step 4.2.1.1.1.2.4
Divide by .
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Multiply by .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.2
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Cancel the common factor.
Step 5.2.1.1.1.2
Divide by .
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8