Enter a problem...
Precalculus Examples
, ,
Step 1
Step 1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1
Add to both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Move the negative in front of the fraction.
Step 1.2.3.1.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply .
Step 2.2.1.1.2.1.1
Multiply by .
Step 2.2.1.1.2.1.2
Combine and .
Step 2.2.1.1.2.1.3
Multiply by .
Step 2.2.1.1.2.2
Multiply .
Step 2.2.1.1.2.2.1
Combine and .
Step 2.2.1.1.2.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply .
Step 2.2.1.1.2.3.1
Multiply by .
Step 2.2.1.1.2.3.2
Combine and .
Step 2.2.1.1.2.3.3
Multiply by .
Step 2.2.1.1.3
Simplify each term.
Step 2.2.1.1.3.1
Move the negative in front of the fraction.
Step 2.2.1.1.3.2
Move the negative in front of the fraction.
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Combine the numerators over the common denominator.
Step 2.2.1.6
Multiply by .
Step 2.2.1.7
Add and .
Step 2.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.9
Simplify terms.
Step 2.2.1.9.1
Combine and .
Step 2.2.1.9.2
Combine the numerators over the common denominator.
Step 2.2.1.10
Simplify the numerator.
Step 2.2.1.10.1
Multiply by .
Step 2.2.1.10.2
Subtract from .
Step 2.2.1.11
Simplify with factoring out.
Step 2.2.1.11.1
Factor out of .
Step 2.2.1.11.2
Rewrite as .
Step 2.2.1.11.3
Factor out of .
Step 2.2.1.11.4
Factor out of .
Step 2.2.1.11.5
Factor out of .
Step 2.2.1.11.6
Simplify the expression.
Step 2.2.1.11.6.1
Rewrite as .
Step 2.2.1.11.6.2
Move the negative in front of the fraction.
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply .
Step 2.4.1.1.2.1.1
Multiply by .
Step 2.4.1.1.2.1.2
Combine and .
Step 2.4.1.1.2.1.3
Multiply by .
Step 2.4.1.1.2.2
Multiply .
Step 2.4.1.1.2.2.1
Combine and .
Step 2.4.1.1.2.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply .
Step 2.4.1.1.2.3.1
Multiply by .
Step 2.4.1.1.2.3.2
Combine and .
Step 2.4.1.1.2.3.3
Multiply by .
Step 2.4.1.1.3
Move the negative in front of the fraction.
Step 2.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.4.1.3
Combine and .
Step 2.4.1.4
Combine the numerators over the common denominator.
Step 2.4.1.5
Combine the numerators over the common denominator.
Step 2.4.1.6
Multiply by .
Step 2.4.1.7
Add and .
Step 2.4.1.8
To write as a fraction with a common denominator, multiply by .
Step 2.4.1.9
Simplify terms.
Step 2.4.1.9.1
Combine and .
Step 2.4.1.9.2
Combine the numerators over the common denominator.
Step 2.4.1.10
Simplify the numerator.
Step 2.4.1.10.1
Multiply by .
Step 2.4.1.10.2
Add and .
Step 3
Step 3.1
Multiply both sides by .
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Cancel the common factor.
Step 3.2.1.1.1.2
Rewrite the expression.
Step 3.2.1.1.2
Simplify the expression.
Step 3.2.1.1.2.1
Move .
Step 3.2.1.1.2.2
Reorder and .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Multiply by .
Step 3.3
Solve for .
Step 3.3.1
Move all terms not containing to the right side of the equation.
Step 3.3.1.1
Subtract from both sides of the equation.
Step 3.3.1.2
Subtract from both sides of the equation.
Step 3.3.1.3
Subtract from .
Step 3.3.2
Divide each term in by and simplify.
Step 3.3.2.1
Divide each term in by .
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Cancel the common factor of .
Step 3.3.2.2.1.1
Cancel the common factor.
Step 3.3.2.2.1.2
Divide by .
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Simplify each term.
Step 3.3.2.3.1.1
Move the negative in front of the fraction.
Step 3.3.2.3.1.2
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify the numerator.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Multiply by .
Step 4.2.1.1.2.2
Combine and .
Step 4.2.1.1.2.3
Multiply by .
Step 4.2.1.1.3
Multiply .
Step 4.2.1.1.3.1
Multiply by .
Step 4.2.1.1.3.2
Combine and .
Step 4.2.1.1.3.3
Multiply by .
Step 4.2.1.1.4
Simplify each term.
Step 4.2.1.1.4.1
Move the negative in front of the fraction.
Step 4.2.1.1.4.2
Move the negative in front of the fraction.
Step 4.2.1.1.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.1.6
Combine and .
Step 4.2.1.1.7
Combine the numerators over the common denominator.
Step 4.2.1.1.8
Combine the numerators over the common denominator.
Step 4.2.1.1.9
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.1.10
Combine and .
Step 4.2.1.1.11
Combine the numerators over the common denominator.
Step 4.2.1.1.12
Reorder terms.
Step 4.2.1.1.13
Rewrite in a factored form.
Step 4.2.1.1.13.1
Multiply by .
Step 4.2.1.1.13.2
Multiply by .
Step 4.2.1.1.13.3
Subtract from .
Step 4.2.1.1.13.4
Subtract from .
Step 4.2.1.1.13.5
Factor out of .
Step 4.2.1.1.13.5.1
Factor out of .
Step 4.2.1.1.13.5.2
Factor out of .
Step 4.2.1.1.13.5.3
Factor out of .
Step 4.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.3
Cancel the common factor of .
Step 4.2.1.3.1
Cancel the common factor.
Step 4.2.1.3.2
Rewrite the expression.
Step 4.2.1.4
Factor out of .
Step 4.2.1.5
Rewrite as .
Step 4.2.1.6
Factor out of .
Step 4.2.1.7
Simplify the expression.
Step 4.2.1.7.1
Rewrite as .
Step 4.2.1.7.2
Move the negative in front of the fraction.
Step 4.2.1.7.3
Multiply by .
Step 4.2.1.7.4
Multiply by .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Combine the numerators over the common denominator.
Step 4.4.1.2
Simplify each term.
Step 4.4.1.2.1
Apply the distributive property.
Step 4.4.1.2.2
Multiply .
Step 4.4.1.2.2.1
Multiply by .
Step 4.4.1.2.2.2
Combine and .
Step 4.4.1.2.2.3
Multiply by .
Step 4.4.1.2.3
Multiply .
Step 4.4.1.2.3.1
Multiply by .
Step 4.4.1.2.3.2
Combine and .
Step 4.4.1.2.3.3
Multiply by .
Step 4.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.4
Combine and .
Step 4.4.1.5
Combine the numerators over the common denominator.
Step 4.4.1.6
Simplify the numerator.
Step 4.4.1.6.1
Multiply by .
Step 4.4.1.6.2
Add and .
Step 4.4.1.7
Move the negative in front of the fraction.
Step 4.4.1.8
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.9
Combine and .
Step 4.4.1.10
Combine the numerators over the common denominator.
Step 4.4.1.11
Combine the numerators over the common denominator.
Step 4.4.1.12
Multiply by .
Step 4.4.1.13
Add and .
Step 4.4.1.14
Factor out of .
Step 4.4.1.14.1
Factor out of .
Step 4.4.1.14.2
Factor out of .
Step 4.4.1.14.3
Factor out of .
Step 4.4.1.15
Multiply the numerator by the reciprocal of the denominator.
Step 4.4.1.16
Cancel the common factor of .
Step 4.4.1.16.1
Cancel the common factor.
Step 4.4.1.16.2
Rewrite the expression.
Step 5
Step 5.1
Multiply both sides by .
Step 5.2
Simplify.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Cancel the common factor of .
Step 5.2.1.1.1
Cancel the common factor.
Step 5.2.1.1.2
Rewrite the expression.
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Multiply by .
Step 5.3
Solve for .
Step 5.3.1
Move all terms not containing to the right side of the equation.
Step 5.3.1.1
Add to both sides of the equation.
Step 5.3.1.2
Add and .
Step 5.3.2
Divide each term in by and simplify.
Step 5.3.2.1
Divide each term in by .
Step 5.3.2.2
Simplify the left side.
Step 5.3.2.2.1
Cancel the common factor of .
Step 5.3.2.2.1.1
Cancel the common factor.
Step 5.3.2.2.1.2
Divide by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify the numerator.
Step 6.2.1.1.1
Multiply .
Step 6.2.1.1.1.1
Combine and .
Step 6.2.1.1.1.2
Multiply by .
Step 6.2.1.1.2
To write as a fraction with a common denominator, multiply by .
Step 6.2.1.1.3
Combine and .
Step 6.2.1.1.4
Combine the numerators over the common denominator.
Step 6.2.1.1.5
Simplify the numerator.
Step 6.2.1.1.5.1
Multiply by .
Step 6.2.1.1.5.2
Subtract from .
Step 6.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 6.2.1.3
Cancel the common factor of .
Step 6.2.1.3.1
Factor out of .
Step 6.2.1.3.2
Cancel the common factor.
Step 6.2.1.3.3
Rewrite the expression.
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Combine the numerators over the common denominator.
Step 6.4.1.2
Simplify each term.
Step 6.4.1.2.1
Multiply .
Step 6.4.1.2.1.1
Combine and .
Step 6.4.1.2.1.2
Multiply by .
Step 6.4.1.2.2
Move the negative in front of the fraction.
Step 6.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 6.4.1.4
Combine and .
Step 6.4.1.5
Combine the numerators over the common denominator.
Step 6.4.1.6
Simplify the numerator.
Step 6.4.1.6.1
Multiply by .
Step 6.4.1.6.2
Subtract from .
Step 6.4.1.7
Move the negative in front of the fraction.
Step 6.4.1.8
Multiply the numerator by the reciprocal of the denominator.
Step 6.4.1.9
Cancel the common factor of .
Step 6.4.1.9.1
Move the leading negative in into the numerator.
Step 6.4.1.9.2
Factor out of .
Step 6.4.1.9.3
Cancel the common factor.
Step 6.4.1.9.4
Rewrite the expression.
Step 6.4.1.10
Move the negative in front of the fraction.
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: