Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Use the quadratic formula to find the solutions.
Step 1.3
Substitute the values , , and into the quadratic formula and solve for .
Step 1.4
Simplify.
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Rewrite as .
Step 1.4.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.4.1.3
Simplify.
Step 1.4.1.3.1
Multiply by .
Step 1.4.1.3.2
Apply the distributive property.
Step 1.4.1.3.3
Multiply by .
Step 1.4.1.3.4
Subtract from .
Step 1.4.1.3.5
Factor out of .
Step 1.4.1.3.5.1
Factor out of .
Step 1.4.1.3.5.2
Factor out of .
Step 1.4.1.3.5.3
Factor out of .
Step 1.4.1.3.6
Combine exponents.
Step 1.4.1.3.6.1
Multiply by .
Step 1.4.1.3.6.2
Multiply by .
Step 1.4.1.4
Simplify each term.
Step 1.4.1.4.1
Apply the distributive property.
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.5
Add and .
Step 1.4.1.6
Factor out of .
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.7
Multiply by .
Step 1.4.1.8
Rewrite as .
Step 1.4.1.8.1
Rewrite as .
Step 1.4.1.8.2
Rewrite as .
Step 1.4.1.8.3
Add parentheses.
Step 1.4.1.9
Pull terms out from under the radical.
Step 1.4.1.10
One to any power is one.
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Rewrite as .
Step 1.5.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.5.1.3
Simplify.
Step 1.5.1.3.1
Multiply by .
Step 1.5.1.3.2
Apply the distributive property.
Step 1.5.1.3.3
Multiply by .
Step 1.5.1.3.4
Subtract from .
Step 1.5.1.3.5
Factor out of .
Step 1.5.1.3.5.1
Factor out of .
Step 1.5.1.3.5.2
Factor out of .
Step 1.5.1.3.5.3
Factor out of .
Step 1.5.1.3.6
Combine exponents.
Step 1.5.1.3.6.1
Multiply by .
Step 1.5.1.3.6.2
Multiply by .
Step 1.5.1.4
Simplify each term.
Step 1.5.1.4.1
Apply the distributive property.
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.5
Add and .
Step 1.5.1.6
Factor out of .
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.7
Multiply by .
Step 1.5.1.8
Rewrite as .
Step 1.5.1.8.1
Rewrite as .
Step 1.5.1.8.2
Rewrite as .
Step 1.5.1.8.3
Add parentheses.
Step 1.5.1.9
Pull terms out from under the radical.
Step 1.5.1.10
One to any power is one.
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Change the to .
Step 1.6
Simplify the expression to solve for the portion of the .
Step 1.6.1
Simplify the numerator.
Step 1.6.1.1
Rewrite as .
Step 1.6.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.6.1.3
Simplify.
Step 1.6.1.3.1
Multiply by .
Step 1.6.1.3.2
Apply the distributive property.
Step 1.6.1.3.3
Multiply by .
Step 1.6.1.3.4
Subtract from .
Step 1.6.1.3.5
Factor out of .
Step 1.6.1.3.5.1
Factor out of .
Step 1.6.1.3.5.2
Factor out of .
Step 1.6.1.3.5.3
Factor out of .
Step 1.6.1.3.6
Combine exponents.
Step 1.6.1.3.6.1
Multiply by .
Step 1.6.1.3.6.2
Multiply by .
Step 1.6.1.4
Simplify each term.
Step 1.6.1.4.1
Apply the distributive property.
Step 1.6.1.4.2
Multiply by .
Step 1.6.1.5
Add and .
Step 1.6.1.6
Factor out of .
Step 1.6.1.6.1
Factor out of .
Step 1.6.1.6.2
Factor out of .
Step 1.6.1.6.3
Factor out of .
Step 1.6.1.7
Multiply by .
Step 1.6.1.8
Rewrite as .
Step 1.6.1.8.1
Rewrite as .
Step 1.6.1.8.2
Rewrite as .
Step 1.6.1.8.3
Add parentheses.
Step 1.6.1.9
Pull terms out from under the radical.
Step 1.6.1.10
One to any power is one.
Step 1.6.2
Multiply by .
Step 1.6.3
Simplify .
Step 1.6.4
Change the to .
Step 1.7
The final answer is the combination of both solutions.
Step 2
Step 2.1
Reorder and .
Step 2.2
Replace all occurrences of with in each equation.
Step 2.2.1
Replace all occurrences of in with .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Simplify .
Step 2.2.2.1.1
Simplify each term.
Step 2.2.2.1.1.1
Rewrite as .
Step 2.2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.2.1.1.2.1
Apply the distributive property.
Step 2.2.2.1.1.2.2
Apply the distributive property.
Step 2.2.2.1.1.2.3
Apply the distributive property.
Step 2.2.2.1.1.3
Simplify and combine like terms.
Step 2.2.2.1.1.3.1
Simplify each term.
Step 2.2.2.1.1.3.1.1
Multiply .
Step 2.2.2.1.1.3.1.1.1
Raise to the power of .
Step 2.2.2.1.1.3.1.1.2
Raise to the power of .
Step 2.2.2.1.1.3.1.1.3
Use the power rule to combine exponents.
Step 2.2.2.1.1.3.1.1.4
Add and .
Step 2.2.2.1.1.3.1.2
Rewrite as .
Step 2.2.2.1.1.3.1.2.1
Use to rewrite as .
Step 2.2.2.1.1.3.1.2.2
Apply the power rule and multiply exponents, .
Step 2.2.2.1.1.3.1.2.3
Combine and .
Step 2.2.2.1.1.3.1.2.4
Cancel the common factor of .
Step 2.2.2.1.1.3.1.2.4.1
Cancel the common factor.
Step 2.2.2.1.1.3.1.2.4.2
Rewrite the expression.
Step 2.2.2.1.1.3.1.2.5
Simplify.
Step 2.2.2.1.1.3.1.3
Expand using the FOIL Method.
Step 2.2.2.1.1.3.1.3.1
Apply the distributive property.
Step 2.2.2.1.1.3.1.3.2
Apply the distributive property.
Step 2.2.2.1.1.3.1.3.3
Apply the distributive property.
Step 2.2.2.1.1.3.1.4
Simplify and combine like terms.
Step 2.2.2.1.1.3.1.4.1
Simplify each term.
Step 2.2.2.1.1.3.1.4.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.2.1.1.3.1.4.1.2
Multiply by by adding the exponents.
Step 2.2.2.1.1.3.1.4.1.2.1
Move .
Step 2.2.2.1.1.3.1.4.1.2.2
Multiply by .
Step 2.2.2.1.1.3.1.4.1.3
Move to the left of .
Step 2.2.2.1.1.3.1.4.1.4
Multiply by .
Step 2.2.2.1.1.3.1.4.1.5
Multiply by .
Step 2.2.2.1.1.3.1.4.2
Subtract from .
Step 2.2.2.1.1.3.1.5
Move to the left of .
Step 2.2.2.1.1.3.1.6
Multiply by .
Step 2.2.2.1.1.3.2
Add and .
Step 2.2.2.1.1.3.3
Subtract from .
Step 2.2.2.1.1.4
Apply the distributive property.
Step 2.2.2.1.1.5
Simplify.
Step 2.2.2.1.1.5.1
Multiply by .
Step 2.2.2.1.1.5.2
Multiply by .
Step 2.2.2.1.1.5.3
Multiply by .
Step 2.2.2.1.1.5.4
Multiply by .
Step 2.2.2.1.1.6
Apply the distributive property.
Step 2.2.2.1.1.7
Multiply by .
Step 2.2.2.1.2
Simplify by adding terms.
Step 2.2.2.1.2.1
Combine the opposite terms in .
Step 2.2.2.1.2.1.1
Add and .
Step 2.2.2.1.2.1.2
Add and .
Step 2.2.2.1.2.2
Add and .
Step 2.2.2.1.2.3
Subtract from .
Step 2.2.2.1.2.4
Subtract from .
Step 2.3
Solve for in .
Step 2.3.1
Subtract from both sides of the equation.
Step 2.3.2
Subtract from .
Step 2.3.3
Factor by grouping.
Step 2.3.3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.3.3.1.1
Factor out of .
Step 2.3.3.1.2
Rewrite as plus
Step 2.3.3.1.3
Apply the distributive property.
Step 2.3.3.2
Factor out the greatest common factor from each group.
Step 2.3.3.2.1
Group the first two terms and the last two terms.
Step 2.3.3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.3.3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3.5
Set equal to and solve for .
Step 2.3.5.1
Set equal to .
Step 2.3.5.2
Subtract from both sides of the equation.
Step 2.3.6
Set equal to and solve for .
Step 2.3.6.1
Set equal to .
Step 2.3.6.2
Solve for .
Step 2.3.6.2.1
Add to both sides of the equation.
Step 2.3.6.2.2
Divide each term in by and simplify.
Step 2.3.6.2.2.1
Divide each term in by .
Step 2.3.6.2.2.2
Simplify the left side.
Step 2.3.6.2.2.2.1
Cancel the common factor of .
Step 2.3.6.2.2.2.1.1
Cancel the common factor.
Step 2.3.6.2.2.2.1.2
Divide by .
Step 2.3.7
The final solution is all the values that make true.
Step 2.4
Replace all occurrences of with in each equation.
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Simplify each term.
Step 2.4.2.1.1.1
Add and .
Step 2.4.2.1.1.2
Multiply by .
Step 2.4.2.1.1.3
Add and .
Step 2.4.2.1.1.4
Multiply by .
Step 2.4.2.1.1.5
Rewrite as .
Step 2.4.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2.1.2
Subtract from .
Step 2.5
Replace all occurrences of with in each equation.
Step 2.5.1
Replace all occurrences of in with .
Step 2.5.2
Simplify the right side.
Step 2.5.2.1
Simplify each term.
Step 2.5.2.1.1
Write as a fraction with a common denominator.
Step 2.5.2.1.2
Combine the numerators over the common denominator.
Step 2.5.2.1.3
Add and .
Step 2.5.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 2.5.2.1.5
Combine and .
Step 2.5.2.1.6
Combine the numerators over the common denominator.
Step 2.5.2.1.7
Simplify the numerator.
Step 2.5.2.1.7.1
Multiply by .
Step 2.5.2.1.7.2
Add and .
Step 2.5.2.1.8
Multiply by .
Step 2.5.2.1.9
Multiply by .
Step 2.5.2.1.10
Multiply by .
Step 2.5.2.1.11
Rewrite as .
Step 2.5.2.1.12
Simplify the numerator.
Step 2.5.2.1.12.1
Rewrite as .
Step 2.5.2.1.12.1.1
Factor out of .
Step 2.5.2.1.12.1.2
Rewrite as .
Step 2.5.2.1.12.2
Pull terms out from under the radical.
Step 2.5.2.1.13
Simplify the denominator.
Step 2.5.2.1.13.1
Rewrite as .
Step 2.5.2.1.13.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3
Step 3.1
Reorder and .
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Rewrite as .
Step 3.2.2.1.1.2
Expand using the FOIL Method.
Step 3.2.2.1.1.2.1
Apply the distributive property.
Step 3.2.2.1.1.2.2
Apply the distributive property.
Step 3.2.2.1.1.2.3
Apply the distributive property.
Step 3.2.2.1.1.3
Simplify and combine like terms.
Step 3.2.2.1.1.3.1
Simplify each term.
Step 3.2.2.1.1.3.1.1
Multiply .
Step 3.2.2.1.1.3.1.1.1
Multiply by .
Step 3.2.2.1.1.3.1.1.2
Multiply by .
Step 3.2.2.1.1.3.1.1.3
Raise to the power of .
Step 3.2.2.1.1.3.1.1.4
Raise to the power of .
Step 3.2.2.1.1.3.1.1.5
Use the power rule to combine exponents.
Step 3.2.2.1.1.3.1.1.6
Add and .
Step 3.2.2.1.1.3.1.2
Rewrite as .
Step 3.2.2.1.1.3.1.2.1
Use to rewrite as .
Step 3.2.2.1.1.3.1.2.2
Apply the power rule and multiply exponents, .
Step 3.2.2.1.1.3.1.2.3
Combine and .
Step 3.2.2.1.1.3.1.2.4
Cancel the common factor of .
Step 3.2.2.1.1.3.1.2.4.1
Cancel the common factor.
Step 3.2.2.1.1.3.1.2.4.2
Rewrite the expression.
Step 3.2.2.1.1.3.1.2.5
Simplify.
Step 3.2.2.1.1.3.1.3
Expand using the FOIL Method.
Step 3.2.2.1.1.3.1.3.1
Apply the distributive property.
Step 3.2.2.1.1.3.1.3.2
Apply the distributive property.
Step 3.2.2.1.1.3.1.3.3
Apply the distributive property.
Step 3.2.2.1.1.3.1.4
Simplify and combine like terms.
Step 3.2.2.1.1.3.1.4.1
Simplify each term.
Step 3.2.2.1.1.3.1.4.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.2.1.1.3.1.4.1.2
Multiply by by adding the exponents.
Step 3.2.2.1.1.3.1.4.1.2.1
Move .
Step 3.2.2.1.1.3.1.4.1.2.2
Multiply by .
Step 3.2.2.1.1.3.1.4.1.3
Move to the left of .
Step 3.2.2.1.1.3.1.4.1.4
Multiply by .
Step 3.2.2.1.1.3.1.4.1.5
Multiply by .
Step 3.2.2.1.1.3.1.4.2
Subtract from .
Step 3.2.2.1.1.3.1.5
Multiply by .
Step 3.2.2.1.1.3.1.6
Multiply by .
Step 3.2.2.1.1.3.1.7
Multiply by .
Step 3.2.2.1.1.3.2
Add and .
Step 3.2.2.1.1.3.3
Add and .
Step 3.2.2.1.1.4
Apply the distributive property.
Step 3.2.2.1.1.5
Simplify.
Step 3.2.2.1.1.5.1
Multiply by .
Step 3.2.2.1.1.5.2
Multiply by .
Step 3.2.2.1.1.5.3
Multiply by .
Step 3.2.2.1.1.5.4
Multiply by .
Step 3.2.2.1.1.6
Apply the distributive property.
Step 3.2.2.1.1.7
Multiply by .
Step 3.2.2.1.1.8
Multiply by .
Step 3.2.2.1.2
Simplify by adding terms.
Step 3.2.2.1.2.1
Combine the opposite terms in .
Step 3.2.2.1.2.1.1
Subtract from .
Step 3.2.2.1.2.1.2
Add and .
Step 3.2.2.1.2.2
Add and .
Step 3.2.2.1.2.3
Subtract from .
Step 3.2.2.1.2.4
Subtract from .
Step 3.3
Solve for in .
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.3.3
Factor by grouping.
Step 3.3.3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.3.3.1.1
Factor out of .
Step 3.3.3.1.2
Rewrite as plus
Step 3.3.3.1.3
Apply the distributive property.
Step 3.3.3.2
Factor out the greatest common factor from each group.
Step 3.3.3.2.1
Group the first two terms and the last two terms.
Step 3.3.3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3.5
Set equal to and solve for .
Step 3.3.5.1
Set equal to .
Step 3.3.5.2
Subtract from both sides of the equation.
Step 3.3.6
Set equal to and solve for .
Step 3.3.6.1
Set equal to .
Step 3.3.6.2
Solve for .
Step 3.3.6.2.1
Add to both sides of the equation.
Step 3.3.6.2.2
Divide each term in by and simplify.
Step 3.3.6.2.2.1
Divide each term in by .
Step 3.3.6.2.2.2
Simplify the left side.
Step 3.3.6.2.2.2.1
Cancel the common factor of .
Step 3.3.6.2.2.2.1.1
Cancel the common factor.
Step 3.3.6.2.2.2.1.2
Divide by .
Step 3.3.7
The final solution is all the values that make true.
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Simplify each term.
Step 3.4.2.1.1.1
Add and .
Step 3.4.2.1.1.2
Multiply by .
Step 3.4.2.1.1.3
Add and .
Step 3.4.2.1.1.4
Multiply by .
Step 3.4.2.1.1.5
Rewrite as .
Step 3.4.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.2.1.1.7
Multiply by .
Step 3.4.2.1.2
Subtract from .
Step 3.5
Replace all occurrences of with in each equation.
Step 3.5.1
Replace all occurrences of in with .
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify each term.
Step 3.5.2.1.1
Write as a fraction with a common denominator.
Step 3.5.2.1.2
Combine the numerators over the common denominator.
Step 3.5.2.1.3
Add and .
Step 3.5.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 3.5.2.1.5
Combine and .
Step 3.5.2.1.6
Combine the numerators over the common denominator.
Step 3.5.2.1.7
Simplify the numerator.
Step 3.5.2.1.7.1
Multiply by .
Step 3.5.2.1.7.2
Add and .
Step 3.5.2.1.8
Multiply by .
Step 3.5.2.1.9
Multiply by .
Step 3.5.2.1.10
Multiply by .
Step 3.5.2.1.11
Rewrite as .
Step 3.5.2.1.12
Simplify the numerator.
Step 3.5.2.1.12.1
Rewrite as .
Step 3.5.2.1.12.1.1
Factor out of .
Step 3.5.2.1.12.1.2
Rewrite as .
Step 3.5.2.1.12.2
Pull terms out from under the radical.
Step 3.5.2.1.13
Simplify the denominator.
Step 3.5.2.1.13.1
Rewrite as .
Step 3.5.2.1.13.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6