Precalculus Examples

Solve by Substitution y=1/2x^3+x^2+10 , y=5x^2-13/2x+10
,
Step 1
Eliminate the equal sides of each equation and combine.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Combine and .
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Combine and .
Step 2.2.2
Move to the left of .
Step 2.3
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 2.3.1
Subtract from both sides of the equation.
Step 2.3.2
Add to both sides of the equation.
Step 2.3.3
Subtract from .
Step 2.4
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 2.4.1
Multiply each term in by .
Step 2.4.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.1.1.1
Cancel the common factor.
Step 2.4.2.1.1.2
Rewrite the expression.
Step 2.4.2.1.2
Multiply by .
Step 2.4.2.1.3
Multiply by .
Step 2.4.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.1.4.1
Cancel the common factor.
Step 2.4.2.1.4.2
Rewrite the expression.
Step 2.4.3
Simplify the right side.
Tap for more steps...
Step 2.4.3.1
Multiply by .
Step 2.5
Subtract from both sides of the equation.
Step 2.6
Combine the opposite terms in .
Tap for more steps...
Step 2.6.1
Subtract from .
Step 2.6.2
Add and .
Step 2.7
Factor out of .
Tap for more steps...
Step 2.7.1
Factor out of .
Step 2.7.2
Factor out of .
Step 2.7.3
Factor out of .
Step 2.7.4
Factor out of .
Step 2.7.5
Factor out of .
Step 2.8
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.9
Set equal to .
Step 2.10
Set equal to and solve for .
Tap for more steps...
Step 2.10.1
Set equal to .
Step 2.10.2
Solve for .
Tap for more steps...
Step 2.10.2.1
Use the quadratic formula to find the solutions.
Step 2.10.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.10.2.3
Simplify.
Tap for more steps...
Step 2.10.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.10.2.3.1.1
Raise to the power of .
Step 2.10.2.3.1.2
Multiply .
Tap for more steps...
Step 2.10.2.3.1.2.1
Multiply by .
Step 2.10.2.3.1.2.2
Multiply by .
Step 2.10.2.3.1.3
Subtract from .
Step 2.10.2.3.1.4
Rewrite as .
Tap for more steps...
Step 2.10.2.3.1.4.1
Factor out of .
Step 2.10.2.3.1.4.2
Rewrite as .
Step 2.10.2.3.1.5
Pull terms out from under the radical.
Step 2.10.2.3.2
Multiply by .
Step 2.10.2.3.3
Simplify .
Step 2.10.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.10.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.10.2.4.1.1
Raise to the power of .
Step 2.10.2.4.1.2
Multiply .
Tap for more steps...
Step 2.10.2.4.1.2.1
Multiply by .
Step 2.10.2.4.1.2.2
Multiply by .
Step 2.10.2.4.1.3
Subtract from .
Step 2.10.2.4.1.4
Rewrite as .
Tap for more steps...
Step 2.10.2.4.1.4.1
Factor out of .
Step 2.10.2.4.1.4.2
Rewrite as .
Step 2.10.2.4.1.5
Pull terms out from under the radical.
Step 2.10.2.4.2
Multiply by .
Step 2.10.2.4.3
Simplify .
Step 2.10.2.4.4
Change the to .
Step 2.10.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.10.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.10.2.5.1.1
Raise to the power of .
Step 2.10.2.5.1.2
Multiply .
Tap for more steps...
Step 2.10.2.5.1.2.1
Multiply by .
Step 2.10.2.5.1.2.2
Multiply by .
Step 2.10.2.5.1.3
Subtract from .
Step 2.10.2.5.1.4
Rewrite as .
Tap for more steps...
Step 2.10.2.5.1.4.1
Factor out of .
Step 2.10.2.5.1.4.2
Rewrite as .
Step 2.10.2.5.1.5
Pull terms out from under the radical.
Step 2.10.2.5.2
Multiply by .
Step 2.10.2.5.3
Simplify .
Step 2.10.2.5.4
Change the to .
Step 2.10.2.6
The final answer is the combination of both solutions.
Step 2.11
The final solution is all the values that make true.
Step 3
Evaluate when .
Tap for more steps...
Step 3.1
Substitute for .
Step 3.2
Substitute for in and solve for .
Tap for more steps...
Step 3.2.1
Remove parentheses.
Step 3.2.2
Remove parentheses.
Step 3.2.3
Simplify .
Tap for more steps...
Step 3.2.3.1
Simplify each term.
Tap for more steps...
Step 3.2.3.1.1
Raising to any positive power yields .
Step 3.2.3.1.2
Multiply by .
Step 3.2.3.1.3
Multiply .
Tap for more steps...
Step 3.2.3.1.3.1
Multiply by .
Step 3.2.3.1.3.2
Multiply by .
Step 3.2.3.2
Simplify by adding numbers.
Tap for more steps...
Step 3.2.3.2.1
Add and .
Step 3.2.3.2.2
Add and .
Step 4
Evaluate when .
Tap for more steps...
Step 4.1
Substitute for .
Step 4.2
Simplify .
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Rewrite as .
Step 4.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.2.1.2.1
Apply the distributive property.
Step 4.2.1.2.2
Apply the distributive property.
Step 4.2.1.2.3
Apply the distributive property.
Step 4.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 4.2.1.3.1
Simplify each term.
Tap for more steps...
Step 4.2.1.3.1.1
Multiply by .
Step 4.2.1.3.1.2
Move to the left of .
Step 4.2.1.3.1.3
Combine using the product rule for radicals.
Step 4.2.1.3.1.4
Multiply by .
Step 4.2.1.3.1.5
Rewrite as .
Step 4.2.1.3.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2.1.3.2
Add and .
Step 4.2.1.3.3
Add and .
Step 4.2.1.4
Apply the distributive property.
Step 4.2.1.5
Multiply by .
Step 4.2.1.6
Multiply by .
Step 4.2.1.7
Apply the distributive property.
Step 4.2.1.8
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.8.1
Move the leading negative in into the numerator.
Step 4.2.1.8.2
Factor out of .
Step 4.2.1.8.3
Cancel the common factor.
Step 4.2.1.8.4
Rewrite the expression.
Step 4.2.1.9
Multiply by .
Step 4.2.1.10
Combine and .
Step 4.2.1.11
Move to the left of .
Step 4.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.2.2.1
Subtract from .
Step 4.2.2.2
Add and .
Step 4.2.3
To write as a fraction with a common denominator, multiply by .
Step 4.2.4
Combine fractions.
Tap for more steps...
Step 4.2.4.1
Combine and .
Step 4.2.4.2
Combine the numerators over the common denominator.
Step 4.2.5
Simplify the numerator.
Tap for more steps...
Step 4.2.5.1
Multiply by .
Step 4.2.5.2
Subtract from .
Step 5
Evaluate when .
Tap for more steps...
Step 5.1
Substitute for .
Step 5.2
Simplify .
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Rewrite as .
Step 5.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.1.2.1
Apply the distributive property.
Step 5.2.1.2.2
Apply the distributive property.
Step 5.2.1.2.3
Apply the distributive property.
Step 5.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.3.1
Simplify each term.
Tap for more steps...
Step 5.2.1.3.1.1
Multiply by .
Step 5.2.1.3.1.2
Multiply by .
Step 5.2.1.3.1.3
Multiply by .
Step 5.2.1.3.1.4
Multiply .
Tap for more steps...
Step 5.2.1.3.1.4.1
Multiply by .
Step 5.2.1.3.1.4.2
Multiply by .
Step 5.2.1.3.1.4.3
Raise to the power of .
Step 5.2.1.3.1.4.4
Raise to the power of .
Step 5.2.1.3.1.4.5
Use the power rule to combine exponents.
Step 5.2.1.3.1.4.6
Add and .
Step 5.2.1.3.1.5
Rewrite as .
Tap for more steps...
Step 5.2.1.3.1.5.1
Use to rewrite as .
Step 5.2.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 5.2.1.3.1.5.3
Combine and .
Step 5.2.1.3.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.3.1.5.4.1
Cancel the common factor.
Step 5.2.1.3.1.5.4.2
Rewrite the expression.
Step 5.2.1.3.1.5.5
Evaluate the exponent.
Step 5.2.1.3.2
Add and .
Step 5.2.1.3.3
Subtract from .
Step 5.2.1.4
Apply the distributive property.
Step 5.2.1.5
Multiply by .
Step 5.2.1.6
Multiply by .
Step 5.2.1.7
Apply the distributive property.
Step 5.2.1.8
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.8.1
Move the leading negative in into the numerator.
Step 5.2.1.8.2
Factor out of .
Step 5.2.1.8.3
Cancel the common factor.
Step 5.2.1.8.4
Rewrite the expression.
Step 5.2.1.9
Multiply by .
Step 5.2.1.10
Multiply .
Tap for more steps...
Step 5.2.1.10.1
Multiply by .
Step 5.2.1.10.2
Multiply by .
Step 5.2.1.10.3
Combine and .
Step 5.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 5.2.2.1
Subtract from .
Step 5.2.2.2
Add and .
Step 5.2.3
To write as a fraction with a common denominator, multiply by .
Step 5.2.4
Combine fractions.
Tap for more steps...
Step 5.2.4.1
Combine and .
Step 5.2.4.2
Combine the numerators over the common denominator.
Step 5.2.5
Simplify each term.
Tap for more steps...
Step 5.2.5.1
Simplify the numerator.
Tap for more steps...
Step 5.2.5.1.1
Multiply by .
Step 5.2.5.1.2
Add and .
Step 5.2.5.2
Move the negative in front of the fraction.
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8