Enter a problem...
Precalculus Examples
,
Step 1
Combine and .
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Raise to the power of .
Step 2.2.1.1.3.1.1.4
Raise to the power of .
Step 2.2.1.1.3.1.1.5
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.1.6
Add and .
Step 2.2.1.1.3.1.1.7
Multiply by .
Step 2.2.1.1.3.1.2
Multiply by .
Step 2.2.1.1.3.1.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply by .
Step 2.2.1.1.3.2
Add and .
Step 2.2.1.1.4
Multiply .
Step 2.2.1.1.4.1
Combine and .
Step 2.2.1.1.4.2
Multiply by .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Add and .
Step 2.2.1.5.1
Reorder and .
Step 2.2.1.5.2
Add and .
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Multiply through by the least common denominator , then simplify.
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Simplify.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Rewrite the expression.
Step 3.2.2.2
Cancel the common factor of .
Step 3.2.2.2.1
Factor out of .
Step 3.2.2.2.2
Cancel the common factor.
Step 3.2.2.2.3
Rewrite the expression.
Step 3.2.2.3
Multiply by .
Step 3.2.2.4
Multiply by .
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Add and .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.4.1
Factor out of .
Step 3.5.1.4.2
Rewrite as .
Step 3.5.1.5
Pull terms out from under the radical.
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Add and .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.4.1
Factor out of .
Step 3.6.1.4.2
Rewrite as .
Step 3.6.1.5
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Change the to .
Step 3.6.5
Rewrite as .
Step 3.6.6
Factor out of .
Step 3.6.7
Factor out of .
Step 3.6.8
Move the negative in front of the fraction.
Step 3.7
Simplify the expression to solve for the portion of the .
Step 3.7.1
Simplify the numerator.
Step 3.7.1.1
Raise to the power of .
Step 3.7.1.2
Multiply .
Step 3.7.1.2.1
Multiply by .
Step 3.7.1.2.2
Multiply by .
Step 3.7.1.3
Add and .
Step 3.7.1.4
Rewrite as .
Step 3.7.1.4.1
Factor out of .
Step 3.7.1.4.2
Rewrite as .
Step 3.7.1.5
Pull terms out from under the radical.
Step 3.7.2
Multiply by .
Step 3.7.3
Simplify .
Step 3.7.4
Change the to .
Step 3.7.5
Rewrite as .
Step 3.7.6
Factor out of .
Step 3.7.7
Factor out of .
Step 3.7.8
Move the negative in front of the fraction.
Step 3.8
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify terms.
Step 4.2.1.1.1
Simplify each term.
Step 4.2.1.1.1.1
Simplify the numerator.
Step 4.2.1.1.1.1.1
Multiply by .
Step 4.2.1.1.1.1.2
Combine and .
Step 4.2.1.1.1.2
Move the negative in front of the fraction.
Step 4.2.1.1.1.3
Simplify the numerator.
Step 4.2.1.1.1.3.1
Apply the distributive property.
Step 4.2.1.1.1.3.2
Multiply by .
Step 4.2.1.1.1.3.3
Multiply by .
Step 4.2.1.1.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.1.1.5
Multiply .
Step 4.2.1.1.1.5.1
Multiply by .
Step 4.2.1.1.1.5.2
Multiply by .
Step 4.2.1.1.1.6
Cancel the common factor of and .
Step 4.2.1.1.1.6.1
Factor out of .
Step 4.2.1.1.1.6.2
Factor out of .
Step 4.2.1.1.1.6.3
Factor out of .
Step 4.2.1.1.1.6.4
Cancel the common factors.
Step 4.2.1.1.1.6.4.1
Factor out of .
Step 4.2.1.1.1.6.4.2
Cancel the common factor.
Step 4.2.1.1.1.6.4.3
Rewrite the expression.
Step 4.2.1.1.2
Simplify the expression.
Step 4.2.1.1.2.1
Write as a fraction with a common denominator.
Step 4.2.1.1.2.2
Combine the numerators over the common denominator.
Step 4.2.1.2
Simplify the numerator.
Step 4.2.1.2.1
Apply the distributive property.
Step 4.2.1.2.2
Multiply by .
Step 4.2.1.2.3
Multiply by .
Step 4.2.1.2.4
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify terms.
Step 5.2.1.1.1
Simplify each term.
Step 5.2.1.1.1.1
Simplify the numerator.
Step 5.2.1.1.1.1.1
Multiply by .
Step 5.2.1.1.1.1.2
Combine and .
Step 5.2.1.1.1.2
Move the negative in front of the fraction.
Step 5.2.1.1.1.3
Simplify the numerator.
Step 5.2.1.1.1.3.1
Apply the distributive property.
Step 5.2.1.1.1.3.2
Multiply by .
Step 5.2.1.1.1.3.3
Multiply by .
Step 5.2.1.1.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.1.1.5
Multiply .
Step 5.2.1.1.1.5.1
Multiply by .
Step 5.2.1.1.1.5.2
Multiply by .
Step 5.2.1.1.1.6
Cancel the common factor of and .
Step 5.2.1.1.1.6.1
Factor out of .
Step 5.2.1.1.1.6.2
Factor out of .
Step 5.2.1.1.1.6.3
Factor out of .
Step 5.2.1.1.1.6.4
Cancel the common factors.
Step 5.2.1.1.1.6.4.1
Factor out of .
Step 5.2.1.1.1.6.4.2
Cancel the common factor.
Step 5.2.1.1.1.6.4.3
Rewrite the expression.
Step 5.2.1.1.2
Simplify the expression.
Step 5.2.1.1.2.1
Write as a fraction with a common denominator.
Step 5.2.1.1.2.2
Combine the numerators over the common denominator.
Step 5.2.1.2
Simplify the numerator.
Step 5.2.1.2.1
Apply the distributive property.
Step 5.2.1.2.2
Multiply by .
Step 5.2.1.2.3
Multiply by .
Step 5.2.1.2.4
Add and .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8