Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.3
Simplify .
Step 1.3.1
Rewrite as .
Step 1.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.4.1
First, use the positive value of the to find the first solution.
Step 1.4.2
Next, use the negative value of the to find the second solution.
Step 1.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
Step 2.1
Replace all occurrences of with in each equation.
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify .
Step 2.1.2.1.1
Simplify the numerator.
Step 2.1.2.1.1.1
Rewrite as .
Step 2.1.2.1.1.1.1
Use to rewrite as .
Step 2.1.2.1.1.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.1.3
Combine and .
Step 2.1.2.1.1.1.4
Cancel the common factor of .
Step 2.1.2.1.1.1.4.1
Cancel the common factor.
Step 2.1.2.1.1.1.4.2
Rewrite the expression.
Step 2.1.2.1.1.1.5
Simplify.
Step 2.1.2.1.1.2
Expand using the FOIL Method.
Step 2.1.2.1.1.2.1
Apply the distributive property.
Step 2.1.2.1.1.2.2
Apply the distributive property.
Step 2.1.2.1.1.2.3
Apply the distributive property.
Step 2.1.2.1.1.3
Simplify and combine like terms.
Step 2.1.2.1.1.3.1
Simplify each term.
Step 2.1.2.1.1.3.1.1
Multiply by .
Step 2.1.2.1.1.3.1.2
Multiply by .
Step 2.1.2.1.1.3.1.3
Move to the left of .
Step 2.1.2.1.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.1.3.1.5
Multiply by by adding the exponents.
Step 2.1.2.1.1.3.1.5.1
Move .
Step 2.1.2.1.1.3.1.5.2
Multiply by .
Step 2.1.2.1.1.3.2
Add and .
Step 2.1.2.1.1.3.3
Add and .
Step 2.1.2.1.1.4
Rewrite as .
Step 2.1.2.1.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.1.2.1.4.1
Multiply by .
Step 2.1.2.1.4.2
Multiply by .
Step 2.1.2.1.4.3
Multiply by .
Step 2.1.2.1.4.4
Multiply by .
Step 2.1.2.1.5
Combine the numerators over the common denominator.
Step 2.1.2.1.6
Simplify the numerator.
Step 2.1.2.1.6.1
Expand using the FOIL Method.
Step 2.1.2.1.6.1.1
Apply the distributive property.
Step 2.1.2.1.6.1.2
Apply the distributive property.
Step 2.1.2.1.6.1.3
Apply the distributive property.
Step 2.1.2.1.6.2
Simplify and combine like terms.
Step 2.1.2.1.6.2.1
Simplify each term.
Step 2.1.2.1.6.2.1.1
Multiply by .
Step 2.1.2.1.6.2.1.2
Multiply by .
Step 2.1.2.1.6.2.1.3
Move to the left of .
Step 2.1.2.1.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.6.2.1.5
Multiply by by adding the exponents.
Step 2.1.2.1.6.2.1.5.1
Move .
Step 2.1.2.1.6.2.1.5.2
Multiply by .
Step 2.1.2.1.6.2.2
Add and .
Step 2.1.2.1.6.2.3
Add and .
Step 2.1.2.1.6.3
Apply the distributive property.
Step 2.1.2.1.6.4
Multiply by .
Step 2.1.2.1.6.5
Multiply by .
Step 2.1.2.1.6.6
Move to the left of .
Step 2.1.2.1.6.7
Add and .
Step 2.1.2.1.6.8
Factor out of .
Step 2.1.2.1.6.8.1
Factor out of .
Step 2.1.2.1.6.8.2
Factor out of .
Step 2.1.2.1.6.8.3
Factor out of .
Step 2.2
Solve for in .
Step 2.2.1
Multiply both sides by .
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify the left side.
Step 2.2.2.1.1
Simplify .
Step 2.2.2.1.1.1
Cancel the common factor of .
Step 2.2.2.1.1.1.1
Cancel the common factor.
Step 2.2.2.1.1.1.2
Rewrite the expression.
Step 2.2.2.1.1.2
Apply the distributive property.
Step 2.2.2.1.1.3
Simplify the expression.
Step 2.2.2.1.1.3.1
Multiply by .
Step 2.2.2.1.1.3.2
Multiply by .
Step 2.2.2.1.1.3.3
Reorder and .
Step 2.2.2.2
Simplify the right side.
Step 2.2.2.2.1
Multiply by .
Step 2.2.3
Solve for .
Step 2.2.3.1
Move all terms not containing to the right side of the equation.
Step 2.2.3.1.1
Subtract from both sides of the equation.
Step 2.2.3.1.2
Subtract from .
Step 2.2.3.2
Divide each term in by and simplify.
Step 2.2.3.2.1
Divide each term in by .
Step 2.2.3.2.2
Simplify the left side.
Step 2.2.3.2.2.1
Cancel the common factor of .
Step 2.2.3.2.2.1.1
Cancel the common factor.
Step 2.2.3.2.2.1.2
Divide by .
Step 2.2.3.2.3
Simplify the right side.
Step 2.2.3.2.3.1
Dividing two negative values results in a positive value.
Step 2.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.2.3.4
Simplify .
Step 2.2.3.4.1
Rewrite as .
Step 2.2.3.4.2
Simplify the numerator.
Step 2.2.3.4.2.1
Rewrite as .
Step 2.2.3.4.2.1.1
Factor out of .
Step 2.2.3.4.2.1.2
Rewrite as .
Step 2.2.3.4.2.2
Pull terms out from under the radical.
Step 2.2.3.4.3
Simplify the denominator.
Step 2.2.3.4.3.1
Rewrite as .
Step 2.2.3.4.3.1.1
Factor out of .
Step 2.2.3.4.3.1.2
Rewrite as .
Step 2.2.3.4.3.2
Pull terms out from under the radical.
Step 2.2.3.4.4
Multiply by .
Step 2.2.3.4.5
Combine and simplify the denominator.
Step 2.2.3.4.5.1
Multiply by .
Step 2.2.3.4.5.2
Move .
Step 2.2.3.4.5.3
Raise to the power of .
Step 2.2.3.4.5.4
Raise to the power of .
Step 2.2.3.4.5.5
Use the power rule to combine exponents.
Step 2.2.3.4.5.6
Add and .
Step 2.2.3.4.5.7
Rewrite as .
Step 2.2.3.4.5.7.1
Use to rewrite as .
Step 2.2.3.4.5.7.2
Apply the power rule and multiply exponents, .
Step 2.2.3.4.5.7.3
Combine and .
Step 2.2.3.4.5.7.4
Cancel the common factor of .
Step 2.2.3.4.5.7.4.1
Cancel the common factor.
Step 2.2.3.4.5.7.4.2
Rewrite the expression.
Step 2.2.3.4.5.7.5
Evaluate the exponent.
Step 2.2.3.4.6
Simplify the numerator.
Step 2.2.3.4.6.1
Combine using the product rule for radicals.
Step 2.2.3.4.6.2
Multiply by .
Step 2.2.3.4.7
Multiply by .
Step 2.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.2.3.5.1
First, use the positive value of the to find the first solution.
Step 2.2.3.5.2
Next, use the negative value of the to find the second solution.
Step 2.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3
Replace all occurrences of with in each equation.
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify .
Step 2.3.2.1
Simplify the left side.
Step 2.3.2.1.1
Remove parentheses.
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.2.1.2
Combine and .
Step 2.3.2.2.1.3
Simplify the expression.
Step 2.3.2.2.1.3.1
Combine the numerators over the common denominator.
Step 2.3.2.2.1.3.2
Multiply by .
Step 2.3.2.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.2.1.5
Combine fractions.
Step 2.3.2.2.1.5.1
Combine and .
Step 2.3.2.2.1.5.2
Simplify the expression.
Step 2.3.2.2.1.5.2.1
Combine the numerators over the common denominator.
Step 2.3.2.2.1.5.2.2
Multiply by .
Step 2.3.2.2.1.5.3
Multiply by .
Step 2.3.2.2.1.6
Simplify the numerator.
Step 2.3.2.2.1.6.1
Expand using the FOIL Method.
Step 2.3.2.2.1.6.1.1
Apply the distributive property.
Step 2.3.2.2.1.6.1.2
Apply the distributive property.
Step 2.3.2.2.1.6.1.3
Apply the distributive property.
Step 2.3.2.2.1.6.2
Simplify and combine like terms.
Step 2.3.2.2.1.6.2.1
Simplify each term.
Step 2.3.2.2.1.6.2.1.1
Multiply by .
Step 2.3.2.2.1.6.2.1.2
Multiply by .
Step 2.3.2.2.1.6.2.1.3
Multiply by .
Step 2.3.2.2.1.6.2.1.4
Multiply .
Step 2.3.2.2.1.6.2.1.4.1
Multiply by .
Step 2.3.2.2.1.6.2.1.4.2
Raise to the power of .
Step 2.3.2.2.1.6.2.1.4.3
Raise to the power of .
Step 2.3.2.2.1.6.2.1.4.4
Use the power rule to combine exponents.
Step 2.3.2.2.1.6.2.1.4.5
Add and .
Step 2.3.2.2.1.6.2.1.5
Rewrite as .
Step 2.3.2.2.1.6.2.1.5.1
Use to rewrite as .
Step 2.3.2.2.1.6.2.1.5.2
Apply the power rule and multiply exponents, .
Step 2.3.2.2.1.6.2.1.5.3
Combine and .
Step 2.3.2.2.1.6.2.1.5.4
Cancel the common factor of .
Step 2.3.2.2.1.6.2.1.5.4.1
Cancel the common factor.
Step 2.3.2.2.1.6.2.1.5.4.2
Rewrite the expression.
Step 2.3.2.2.1.6.2.1.5.5
Evaluate the exponent.
Step 2.3.2.2.1.6.2.1.6
Multiply by .
Step 2.3.2.2.1.6.2.2
Subtract from .
Step 2.3.2.2.1.6.2.3
Add and .
Step 2.3.2.2.1.6.2.4
Add and .
Step 2.3.2.2.1.7
Reduce the expression by cancelling the common factors.
Step 2.3.2.2.1.7.1
Multiply by .
Step 2.3.2.2.1.7.2
Cancel the common factor of and .
Step 2.3.2.2.1.7.2.1
Factor out of .
Step 2.3.2.2.1.7.2.2
Cancel the common factors.
Step 2.3.2.2.1.7.2.2.1
Factor out of .
Step 2.3.2.2.1.7.2.2.2
Cancel the common factor.
Step 2.3.2.2.1.7.2.2.3
Rewrite the expression.
Step 2.3.2.2.1.8
Rewrite as .
Step 2.3.2.2.1.9
Simplify the numerator.
Step 2.3.2.2.1.9.1
Rewrite as .
Step 2.3.2.2.1.9.1.1
Factor out of .
Step 2.3.2.2.1.9.1.2
Rewrite as .
Step 2.3.2.2.1.9.2
Pull terms out from under the radical.
Step 2.3.2.2.1.10
Simplify the denominator.
Step 2.3.2.2.1.10.1
Rewrite as .
Step 2.3.2.2.1.10.1.1
Factor out of .
Step 2.3.2.2.1.10.1.2
Rewrite as .
Step 2.3.2.2.1.10.2
Pull terms out from under the radical.
Step 2.3.2.2.1.11
Multiply by .
Step 2.3.2.2.1.12
Combine and simplify the denominator.
Step 2.3.2.2.1.12.1
Multiply by .
Step 2.3.2.2.1.12.2
Move .
Step 2.3.2.2.1.12.3
Raise to the power of .
Step 2.3.2.2.1.12.4
Raise to the power of .
Step 2.3.2.2.1.12.5
Use the power rule to combine exponents.
Step 2.3.2.2.1.12.6
Add and .
Step 2.3.2.2.1.12.7
Rewrite as .
Step 2.3.2.2.1.12.7.1
Use to rewrite as .
Step 2.3.2.2.1.12.7.2
Apply the power rule and multiply exponents, .
Step 2.3.2.2.1.12.7.3
Combine and .
Step 2.3.2.2.1.12.7.4
Cancel the common factor of .
Step 2.3.2.2.1.12.7.4.1
Cancel the common factor.
Step 2.3.2.2.1.12.7.4.2
Rewrite the expression.
Step 2.3.2.2.1.12.7.5
Evaluate the exponent.
Step 2.3.2.2.1.13
Simplify the numerator.
Step 2.3.2.2.1.13.1
Combine using the product rule for radicals.
Step 2.3.2.2.1.13.2
Multiply by .
Step 2.3.2.2.1.14
Multiply by .
Step 2.4
Replace all occurrences of with in each equation.
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify .
Step 2.4.2.1
Simplify the left side.
Step 2.4.2.1.1
Remove parentheses.
Step 2.4.2.2
Simplify the right side.
Step 2.4.2.2.1
Simplify .
Step 2.4.2.2.1.1
Multiply .
Step 2.4.2.2.1.1.1
Multiply by .
Step 2.4.2.2.1.1.2
Multiply by .
Step 2.4.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.4.2.2.1.3
Combine and .
Step 2.4.2.2.1.4
Simplify the expression.
Step 2.4.2.2.1.4.1
Combine the numerators over the common denominator.
Step 2.4.2.2.1.4.2
Multiply by .
Step 2.4.2.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 2.4.2.2.1.6
Combine fractions.
Step 2.4.2.2.1.6.1
Combine and .
Step 2.4.2.2.1.6.2
Simplify the expression.
Step 2.4.2.2.1.6.2.1
Combine the numerators over the common denominator.
Step 2.4.2.2.1.6.2.2
Multiply by .
Step 2.4.2.2.1.6.3
Multiply by .
Step 2.4.2.2.1.7
Simplify the numerator.
Step 2.4.2.2.1.7.1
Expand using the FOIL Method.
Step 2.4.2.2.1.7.1.1
Apply the distributive property.
Step 2.4.2.2.1.7.1.2
Apply the distributive property.
Step 2.4.2.2.1.7.1.3
Apply the distributive property.
Step 2.4.2.2.1.7.2
Simplify and combine like terms.
Step 2.4.2.2.1.7.2.1
Simplify each term.
Step 2.4.2.2.1.7.2.1.1
Multiply by .
Step 2.4.2.2.1.7.2.1.2
Multiply by .
Step 2.4.2.2.1.7.2.1.3
Multiply by .
Step 2.4.2.2.1.7.2.1.4
Multiply .
Step 2.4.2.2.1.7.2.1.4.1
Multiply by .
Step 2.4.2.2.1.7.2.1.4.2
Raise to the power of .
Step 2.4.2.2.1.7.2.1.4.3
Raise to the power of .
Step 2.4.2.2.1.7.2.1.4.4
Use the power rule to combine exponents.
Step 2.4.2.2.1.7.2.1.4.5
Add and .
Step 2.4.2.2.1.7.2.1.5
Rewrite as .
Step 2.4.2.2.1.7.2.1.5.1
Use to rewrite as .
Step 2.4.2.2.1.7.2.1.5.2
Apply the power rule and multiply exponents, .
Step 2.4.2.2.1.7.2.1.5.3
Combine and .
Step 2.4.2.2.1.7.2.1.5.4
Cancel the common factor of .
Step 2.4.2.2.1.7.2.1.5.4.1
Cancel the common factor.
Step 2.4.2.2.1.7.2.1.5.4.2
Rewrite the expression.
Step 2.4.2.2.1.7.2.1.5.5
Evaluate the exponent.
Step 2.4.2.2.1.7.2.1.6
Multiply by .
Step 2.4.2.2.1.7.2.2
Subtract from .
Step 2.4.2.2.1.7.2.3
Subtract from .
Step 2.4.2.2.1.7.2.4
Add and .
Step 2.4.2.2.1.8
Reduce the expression by cancelling the common factors.
Step 2.4.2.2.1.8.1
Multiply by .
Step 2.4.2.2.1.8.2
Cancel the common factor of and .
Step 2.4.2.2.1.8.2.1
Factor out of .
Step 2.4.2.2.1.8.2.2
Cancel the common factors.
Step 2.4.2.2.1.8.2.2.1
Factor out of .
Step 2.4.2.2.1.8.2.2.2
Cancel the common factor.
Step 2.4.2.2.1.8.2.2.3
Rewrite the expression.
Step 2.4.2.2.1.9
Rewrite as .
Step 2.4.2.2.1.10
Simplify the numerator.
Step 2.4.2.2.1.10.1
Rewrite as .
Step 2.4.2.2.1.10.1.1
Factor out of .
Step 2.4.2.2.1.10.1.2
Rewrite as .
Step 2.4.2.2.1.10.2
Pull terms out from under the radical.
Step 2.4.2.2.1.11
Simplify the denominator.
Step 2.4.2.2.1.11.1
Rewrite as .
Step 2.4.2.2.1.11.1.1
Factor out of .
Step 2.4.2.2.1.11.1.2
Rewrite as .
Step 2.4.2.2.1.11.2
Pull terms out from under the radical.
Step 2.4.2.2.1.12
Multiply by .
Step 2.4.2.2.1.13
Combine and simplify the denominator.
Step 2.4.2.2.1.13.1
Multiply by .
Step 2.4.2.2.1.13.2
Move .
Step 2.4.2.2.1.13.3
Raise to the power of .
Step 2.4.2.2.1.13.4
Raise to the power of .
Step 2.4.2.2.1.13.5
Use the power rule to combine exponents.
Step 2.4.2.2.1.13.6
Add and .
Step 2.4.2.2.1.13.7
Rewrite as .
Step 2.4.2.2.1.13.7.1
Use to rewrite as .
Step 2.4.2.2.1.13.7.2
Apply the power rule and multiply exponents, .
Step 2.4.2.2.1.13.7.3
Combine and .
Step 2.4.2.2.1.13.7.4
Cancel the common factor of .
Step 2.4.2.2.1.13.7.4.1
Cancel the common factor.
Step 2.4.2.2.1.13.7.4.2
Rewrite the expression.
Step 2.4.2.2.1.13.7.5
Evaluate the exponent.
Step 2.4.2.2.1.14
Simplify the numerator.
Step 2.4.2.2.1.14.1
Combine using the product rule for radicals.
Step 2.4.2.2.1.14.2
Multiply by .
Step 2.4.2.2.1.15
Multiply by .
Step 3
Step 3.1
Replace all occurrences of with in each equation.
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify .
Step 3.1.2.1.1
Simplify the numerator.
Step 3.1.2.1.1.1
Apply the product rule to .
Step 3.1.2.1.1.2
Raise to the power of .
Step 3.1.2.1.1.3
Rewrite as .
Step 3.1.2.1.1.3.1
Use to rewrite as .
Step 3.1.2.1.1.3.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.3.3
Combine and .
Step 3.1.2.1.1.3.4
Cancel the common factor of .
Step 3.1.2.1.1.3.4.1
Cancel the common factor.
Step 3.1.2.1.1.3.4.2
Rewrite the expression.
Step 3.1.2.1.1.3.5
Simplify.
Step 3.1.2.1.1.4
Expand using the FOIL Method.
Step 3.1.2.1.1.4.1
Apply the distributive property.
Step 3.1.2.1.1.4.2
Apply the distributive property.
Step 3.1.2.1.1.4.3
Apply the distributive property.
Step 3.1.2.1.1.5
Simplify and combine like terms.
Step 3.1.2.1.1.5.1
Simplify each term.
Step 3.1.2.1.1.5.1.1
Multiply by .
Step 3.1.2.1.1.5.1.2
Multiply by .
Step 3.1.2.1.1.5.1.3
Move to the left of .
Step 3.1.2.1.1.5.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.2.1.1.5.1.5
Multiply by by adding the exponents.
Step 3.1.2.1.1.5.1.5.1
Move .
Step 3.1.2.1.1.5.1.5.2
Multiply by .
Step 3.1.2.1.1.5.2
Add and .
Step 3.1.2.1.1.5.3
Add and .
Step 3.1.2.1.1.6
Multiply by .
Step 3.1.2.1.1.7
Rewrite as .
Step 3.1.2.1.1.8
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.1.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 3.1.2.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.1.2.1.4.1
Multiply by .
Step 3.1.2.1.4.2
Multiply by .
Step 3.1.2.1.4.3
Multiply by .
Step 3.1.2.1.4.4
Multiply by .
Step 3.1.2.1.5
Combine the numerators over the common denominator.
Step 3.1.2.1.6
Simplify the numerator.
Step 3.1.2.1.6.1
Expand using the FOIL Method.
Step 3.1.2.1.6.1.1
Apply the distributive property.
Step 3.1.2.1.6.1.2
Apply the distributive property.
Step 3.1.2.1.6.1.3
Apply the distributive property.
Step 3.1.2.1.6.2
Simplify and combine like terms.
Step 3.1.2.1.6.2.1
Simplify each term.
Step 3.1.2.1.6.2.1.1
Multiply by .
Step 3.1.2.1.6.2.1.2
Multiply by .
Step 3.1.2.1.6.2.1.3
Move to the left of .
Step 3.1.2.1.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.2.1.6.2.1.5
Multiply by by adding the exponents.
Step 3.1.2.1.6.2.1.5.1
Move .
Step 3.1.2.1.6.2.1.5.2
Multiply by .
Step 3.1.2.1.6.2.2
Add and .
Step 3.1.2.1.6.2.3
Add and .
Step 3.1.2.1.6.3
Apply the distributive property.
Step 3.1.2.1.6.4
Multiply by .
Step 3.1.2.1.6.5
Multiply by .
Step 3.1.2.1.6.6
Move to the left of .
Step 3.1.2.1.6.7
Add and .
Step 3.1.2.1.6.8
Factor out of .
Step 3.1.2.1.6.8.1
Factor out of .
Step 3.1.2.1.6.8.2
Factor out of .
Step 3.1.2.1.6.8.3
Factor out of .
Step 3.2
Solve for in .
Step 3.2.1
Multiply both sides by .
Step 3.2.2
Simplify.
Step 3.2.2.1
Simplify the left side.
Step 3.2.2.1.1
Simplify .
Step 3.2.2.1.1.1
Cancel the common factor of .
Step 3.2.2.1.1.1.1
Cancel the common factor.
Step 3.2.2.1.1.1.2
Rewrite the expression.
Step 3.2.2.1.1.2
Apply the distributive property.
Step 3.2.2.1.1.3
Simplify the expression.
Step 3.2.2.1.1.3.1
Multiply by .
Step 3.2.2.1.1.3.2
Multiply by .
Step 3.2.2.1.1.3.3
Reorder and .
Step 3.2.2.2
Simplify the right side.
Step 3.2.2.2.1
Multiply by .
Step 3.2.3
Solve for .
Step 3.2.3.1
Move all terms not containing to the right side of the equation.
Step 3.2.3.1.1
Subtract from both sides of the equation.
Step 3.2.3.1.2
Subtract from .
Step 3.2.3.2
Divide each term in by and simplify.
Step 3.2.3.2.1
Divide each term in by .
Step 3.2.3.2.2
Simplify the left side.
Step 3.2.3.2.2.1
Cancel the common factor of .
Step 3.2.3.2.2.1.1
Cancel the common factor.
Step 3.2.3.2.2.1.2
Divide by .
Step 3.2.3.2.3
Simplify the right side.
Step 3.2.3.2.3.1
Dividing two negative values results in a positive value.
Step 3.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.3.4
Simplify .
Step 3.2.3.4.1
Rewrite as .
Step 3.2.3.4.2
Simplify the numerator.
Step 3.2.3.4.2.1
Rewrite as .
Step 3.2.3.4.2.1.1
Factor out of .
Step 3.2.3.4.2.1.2
Rewrite as .
Step 3.2.3.4.2.2
Pull terms out from under the radical.
Step 3.2.3.4.3
Simplify the denominator.
Step 3.2.3.4.3.1
Rewrite as .
Step 3.2.3.4.3.1.1
Factor out of .
Step 3.2.3.4.3.1.2
Rewrite as .
Step 3.2.3.4.3.2
Pull terms out from under the radical.
Step 3.2.3.4.4
Multiply by .
Step 3.2.3.4.5
Combine and simplify the denominator.
Step 3.2.3.4.5.1
Multiply by .
Step 3.2.3.4.5.2
Move .
Step 3.2.3.4.5.3
Raise to the power of .
Step 3.2.3.4.5.4
Raise to the power of .
Step 3.2.3.4.5.5
Use the power rule to combine exponents.
Step 3.2.3.4.5.6
Add and .
Step 3.2.3.4.5.7
Rewrite as .
Step 3.2.3.4.5.7.1
Use to rewrite as .
Step 3.2.3.4.5.7.2
Apply the power rule and multiply exponents, .
Step 3.2.3.4.5.7.3
Combine and .
Step 3.2.3.4.5.7.4
Cancel the common factor of .
Step 3.2.3.4.5.7.4.1
Cancel the common factor.
Step 3.2.3.4.5.7.4.2
Rewrite the expression.
Step 3.2.3.4.5.7.5
Evaluate the exponent.
Step 3.2.3.4.6
Simplify the numerator.
Step 3.2.3.4.6.1
Combine using the product rule for radicals.
Step 3.2.3.4.6.2
Multiply by .
Step 3.2.3.4.7
Multiply by .
Step 3.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.2.3.5.1
First, use the positive value of the to find the first solution.
Step 3.2.3.5.2
Next, use the negative value of the to find the second solution.
Step 3.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3
Replace all occurrences of with in each equation.
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify .
Step 3.3.2.1
Simplify the left side.
Step 3.3.2.1.1
Remove parentheses.
Step 3.3.2.2
Simplify the right side.
Step 3.3.2.2.1
Simplify .
Step 3.3.2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.2.1.2
Combine and .
Step 3.3.2.2.1.3
Simplify the expression.
Step 3.3.2.2.1.3.1
Combine the numerators over the common denominator.
Step 3.3.2.2.1.3.2
Multiply by .
Step 3.3.2.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.2.1.5
Combine fractions.
Step 3.3.2.2.1.5.1
Combine and .
Step 3.3.2.2.1.5.2
Simplify the expression.
Step 3.3.2.2.1.5.2.1
Combine the numerators over the common denominator.
Step 3.3.2.2.1.5.2.2
Multiply by .
Step 3.3.2.2.1.5.3
Multiply by .
Step 3.3.2.2.1.6
Simplify the numerator.
Step 3.3.2.2.1.6.1
Expand using the FOIL Method.
Step 3.3.2.2.1.6.1.1
Apply the distributive property.
Step 3.3.2.2.1.6.1.2
Apply the distributive property.
Step 3.3.2.2.1.6.1.3
Apply the distributive property.
Step 3.3.2.2.1.6.2
Simplify and combine like terms.
Step 3.3.2.2.1.6.2.1
Simplify each term.
Step 3.3.2.2.1.6.2.1.1
Multiply by .
Step 3.3.2.2.1.6.2.1.2
Multiply by .
Step 3.3.2.2.1.6.2.1.3
Multiply by .
Step 3.3.2.2.1.6.2.1.4
Multiply .
Step 3.3.2.2.1.6.2.1.4.1
Multiply by .
Step 3.3.2.2.1.6.2.1.4.2
Raise to the power of .
Step 3.3.2.2.1.6.2.1.4.3
Raise to the power of .
Step 3.3.2.2.1.6.2.1.4.4
Use the power rule to combine exponents.
Step 3.3.2.2.1.6.2.1.4.5
Add and .
Step 3.3.2.2.1.6.2.1.5
Rewrite as .
Step 3.3.2.2.1.6.2.1.5.1
Use to rewrite as .
Step 3.3.2.2.1.6.2.1.5.2
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.6.2.1.5.3
Combine and .
Step 3.3.2.2.1.6.2.1.5.4
Cancel the common factor of .
Step 3.3.2.2.1.6.2.1.5.4.1
Cancel the common factor.
Step 3.3.2.2.1.6.2.1.5.4.2
Rewrite the expression.
Step 3.3.2.2.1.6.2.1.5.5
Evaluate the exponent.
Step 3.3.2.2.1.6.2.1.6
Multiply by .
Step 3.3.2.2.1.6.2.2
Subtract from .
Step 3.3.2.2.1.6.2.3
Add and .
Step 3.3.2.2.1.6.2.4
Add and .
Step 3.3.2.2.1.7
Reduce the expression by cancelling the common factors.
Step 3.3.2.2.1.7.1
Multiply by .
Step 3.3.2.2.1.7.2
Cancel the common factor of and .
Step 3.3.2.2.1.7.2.1
Factor out of .
Step 3.3.2.2.1.7.2.2
Cancel the common factors.
Step 3.3.2.2.1.7.2.2.1
Factor out of .
Step 3.3.2.2.1.7.2.2.2
Cancel the common factor.
Step 3.3.2.2.1.7.2.2.3
Rewrite the expression.
Step 3.3.2.2.1.8
Rewrite as .
Step 3.3.2.2.1.9
Simplify the numerator.
Step 3.3.2.2.1.9.1
Rewrite as .
Step 3.3.2.2.1.9.1.1
Factor out of .
Step 3.3.2.2.1.9.1.2
Rewrite as .
Step 3.3.2.2.1.9.2
Pull terms out from under the radical.
Step 3.3.2.2.1.10
Simplify the denominator.
Step 3.3.2.2.1.10.1
Rewrite as .
Step 3.3.2.2.1.10.1.1
Factor out of .
Step 3.3.2.2.1.10.1.2
Rewrite as .
Step 3.3.2.2.1.10.2
Pull terms out from under the radical.
Step 3.3.2.2.1.11
Multiply by .
Step 3.3.2.2.1.12
Combine and simplify the denominator.
Step 3.3.2.2.1.12.1
Multiply by .
Step 3.3.2.2.1.12.2
Move .
Step 3.3.2.2.1.12.3
Raise to the power of .
Step 3.3.2.2.1.12.4
Raise to the power of .
Step 3.3.2.2.1.12.5
Use the power rule to combine exponents.
Step 3.3.2.2.1.12.6
Add and .
Step 3.3.2.2.1.12.7
Rewrite as .
Step 3.3.2.2.1.12.7.1
Use to rewrite as .
Step 3.3.2.2.1.12.7.2
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.12.7.3
Combine and .
Step 3.3.2.2.1.12.7.4
Cancel the common factor of .
Step 3.3.2.2.1.12.7.4.1
Cancel the common factor.
Step 3.3.2.2.1.12.7.4.2
Rewrite the expression.
Step 3.3.2.2.1.12.7.5
Evaluate the exponent.
Step 3.3.2.2.1.13
Simplify the numerator.
Step 3.3.2.2.1.13.1
Combine using the product rule for radicals.
Step 3.3.2.2.1.13.2
Multiply by .
Step 3.3.2.2.1.14
Multiply by .
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify .
Step 3.4.2.1
Simplify the left side.
Step 3.4.2.1.1
Remove parentheses.
Step 3.4.2.2
Simplify the right side.
Step 3.4.2.2.1
Simplify .
Step 3.4.2.2.1.1
Multiply .
Step 3.4.2.2.1.1.1
Multiply by .
Step 3.4.2.2.1.1.2
Multiply by .
Step 3.4.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.2.1.3
Combine and .
Step 3.4.2.2.1.4
Simplify the expression.
Step 3.4.2.2.1.4.1
Combine the numerators over the common denominator.
Step 3.4.2.2.1.4.2
Multiply by .
Step 3.4.2.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.2.1.6
Combine fractions.
Step 3.4.2.2.1.6.1
Combine and .
Step 3.4.2.2.1.6.2
Simplify the expression.
Step 3.4.2.2.1.6.2.1
Combine the numerators over the common denominator.
Step 3.4.2.2.1.6.2.2
Multiply by .
Step 3.4.2.2.1.6.3
Multiply by .
Step 3.4.2.2.1.7
Simplify the numerator.
Step 3.4.2.2.1.7.1
Expand using the FOIL Method.
Step 3.4.2.2.1.7.1.1
Apply the distributive property.
Step 3.4.2.2.1.7.1.2
Apply the distributive property.
Step 3.4.2.2.1.7.1.3
Apply the distributive property.
Step 3.4.2.2.1.7.2
Simplify and combine like terms.
Step 3.4.2.2.1.7.2.1
Simplify each term.
Step 3.4.2.2.1.7.2.1.1
Multiply by .
Step 3.4.2.2.1.7.2.1.2
Multiply by .
Step 3.4.2.2.1.7.2.1.3
Multiply by .
Step 3.4.2.2.1.7.2.1.4
Multiply .
Step 3.4.2.2.1.7.2.1.4.1
Multiply by .
Step 3.4.2.2.1.7.2.1.4.2
Raise to the power of .
Step 3.4.2.2.1.7.2.1.4.3
Raise to the power of .
Step 3.4.2.2.1.7.2.1.4.4
Use the power rule to combine exponents.
Step 3.4.2.2.1.7.2.1.4.5
Add and .
Step 3.4.2.2.1.7.2.1.5
Rewrite as .
Step 3.4.2.2.1.7.2.1.5.1
Use to rewrite as .
Step 3.4.2.2.1.7.2.1.5.2
Apply the power rule and multiply exponents, .
Step 3.4.2.2.1.7.2.1.5.3
Combine and .
Step 3.4.2.2.1.7.2.1.5.4
Cancel the common factor of .
Step 3.4.2.2.1.7.2.1.5.4.1
Cancel the common factor.
Step 3.4.2.2.1.7.2.1.5.4.2
Rewrite the expression.
Step 3.4.2.2.1.7.2.1.5.5
Evaluate the exponent.
Step 3.4.2.2.1.7.2.1.6
Multiply by .
Step 3.4.2.2.1.7.2.2
Subtract from .
Step 3.4.2.2.1.7.2.3
Subtract from .
Step 3.4.2.2.1.7.2.4
Add and .
Step 3.4.2.2.1.8
Reduce the expression by cancelling the common factors.
Step 3.4.2.2.1.8.1
Multiply by .
Step 3.4.2.2.1.8.2
Cancel the common factor of and .
Step 3.4.2.2.1.8.2.1
Factor out of .
Step 3.4.2.2.1.8.2.2
Cancel the common factors.
Step 3.4.2.2.1.8.2.2.1
Factor out of .
Step 3.4.2.2.1.8.2.2.2
Cancel the common factor.
Step 3.4.2.2.1.8.2.2.3
Rewrite the expression.
Step 3.4.2.2.1.9
Rewrite as .
Step 3.4.2.2.1.10
Simplify the numerator.
Step 3.4.2.2.1.10.1
Rewrite as .
Step 3.4.2.2.1.10.1.1
Factor out of .
Step 3.4.2.2.1.10.1.2
Rewrite as .
Step 3.4.2.2.1.10.2
Pull terms out from under the radical.
Step 3.4.2.2.1.11
Simplify the denominator.
Step 3.4.2.2.1.11.1
Rewrite as .
Step 3.4.2.2.1.11.1.1
Factor out of .
Step 3.4.2.2.1.11.1.2
Rewrite as .
Step 3.4.2.2.1.11.2
Pull terms out from under the radical.
Step 3.4.2.2.1.12
Multiply by .
Step 3.4.2.2.1.13
Combine and simplify the denominator.
Step 3.4.2.2.1.13.1
Multiply by .
Step 3.4.2.2.1.13.2
Move .
Step 3.4.2.2.1.13.3
Raise to the power of .
Step 3.4.2.2.1.13.4
Raise to the power of .
Step 3.4.2.2.1.13.5
Use the power rule to combine exponents.
Step 3.4.2.2.1.13.6
Add and .
Step 3.4.2.2.1.13.7
Rewrite as .
Step 3.4.2.2.1.13.7.1
Use to rewrite as .
Step 3.4.2.2.1.13.7.2
Apply the power rule and multiply exponents, .
Step 3.4.2.2.1.13.7.3
Combine and .
Step 3.4.2.2.1.13.7.4
Cancel the common factor of .
Step 3.4.2.2.1.13.7.4.1
Cancel the common factor.
Step 3.4.2.2.1.13.7.4.2
Rewrite the expression.
Step 3.4.2.2.1.13.7.5
Evaluate the exponent.
Step 3.4.2.2.1.14
Simplify the numerator.
Step 3.4.2.2.1.14.1
Combine using the product rule for radicals.
Step 3.4.2.2.1.14.2
Multiply by .
Step 3.4.2.2.1.15
Multiply by .
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6