Precalculus Examples

Solve by Substitution x^2+y^2=36 , (x^2)/25+(y^2)/49=1
,
Step 1
Solve for in .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.3
Simplify .
Tap for more steps...
Step 1.3.1
Rewrite as .
Step 1.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.4.1
First, use the positive value of the to find the first solution.
Step 1.4.2
Next, use the negative value of the to find the second solution.
Step 1.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
Solve the system .
Tap for more steps...
Step 2.1
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Tap for more steps...
Step 2.1.2.1
Simplify .
Tap for more steps...
Step 2.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.1.1
Rewrite as .
Tap for more steps...
Step 2.1.2.1.1.1.1
Use to rewrite as .
Step 2.1.2.1.1.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.1.3
Combine and .
Step 2.1.2.1.1.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.1.2.1.1.1.4.1
Cancel the common factor.
Step 2.1.2.1.1.1.4.2
Rewrite the expression.
Step 2.1.2.1.1.1.5
Simplify.
Step 2.1.2.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.1.2.1
Apply the distributive property.
Step 2.1.2.1.1.2.2
Apply the distributive property.
Step 2.1.2.1.1.2.3
Apply the distributive property.
Step 2.1.2.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1.3.1.1
Multiply by .
Step 2.1.2.1.1.3.1.2
Multiply by .
Step 2.1.2.1.1.3.1.3
Move to the left of .
Step 2.1.2.1.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.1.3.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.1.3.1.5.1
Move .
Step 2.1.2.1.1.3.1.5.2
Multiply by .
Step 2.1.2.1.1.3.2
Add and .
Step 2.1.2.1.1.3.3
Add and .
Step 2.1.2.1.1.4
Rewrite as .
Step 2.1.2.1.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.1.2.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 2.1.2.1.4.1
Multiply by .
Step 2.1.2.1.4.2
Multiply by .
Step 2.1.2.1.4.3
Multiply by .
Step 2.1.2.1.4.4
Multiply by .
Step 2.1.2.1.5
Combine the numerators over the common denominator.
Step 2.1.2.1.6
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.6.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.6.1.1
Apply the distributive property.
Step 2.1.2.1.6.1.2
Apply the distributive property.
Step 2.1.2.1.6.1.3
Apply the distributive property.
Step 2.1.2.1.6.2
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.6.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.6.2.1.1
Multiply by .
Step 2.1.2.1.6.2.1.2
Multiply by .
Step 2.1.2.1.6.2.1.3
Move to the left of .
Step 2.1.2.1.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.6.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.6.2.1.5.1
Move .
Step 2.1.2.1.6.2.1.5.2
Multiply by .
Step 2.1.2.1.6.2.2
Add and .
Step 2.1.2.1.6.2.3
Add and .
Step 2.1.2.1.6.3
Apply the distributive property.
Step 2.1.2.1.6.4
Multiply by .
Step 2.1.2.1.6.5
Multiply by .
Step 2.1.2.1.6.6
Move to the left of .
Step 2.1.2.1.6.7
Add and .
Step 2.1.2.1.6.8
Factor out of .
Tap for more steps...
Step 2.1.2.1.6.8.1
Factor out of .
Step 2.1.2.1.6.8.2
Factor out of .
Step 2.1.2.1.6.8.3
Factor out of .
Step 2.2
Solve for in .
Tap for more steps...
Step 2.2.1
Multiply both sides by .
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify the left side.
Tap for more steps...
Step 2.2.2.1.1
Simplify .
Tap for more steps...
Step 2.2.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1.1.1.1
Cancel the common factor.
Step 2.2.2.1.1.1.2
Rewrite the expression.
Step 2.2.2.1.1.2
Apply the distributive property.
Step 2.2.2.1.1.3
Simplify the expression.
Tap for more steps...
Step 2.2.2.1.1.3.1
Multiply by .
Step 2.2.2.1.1.3.2
Multiply by .
Step 2.2.2.1.1.3.3
Reorder and .
Step 2.2.2.2
Simplify the right side.
Tap for more steps...
Step 2.2.2.2.1
Multiply by .
Step 2.2.3
Solve for .
Tap for more steps...
Step 2.2.3.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.2.3.1.1
Subtract from both sides of the equation.
Step 2.2.3.1.2
Subtract from .
Step 2.2.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.3.2.1
Divide each term in by .
Step 2.2.3.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.3.2.2.1.1
Cancel the common factor.
Step 2.2.3.2.2.1.2
Divide by .
Step 2.2.3.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.2.3.1
Dividing two negative values results in a positive value.
Step 2.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.2.3.4
Simplify .
Tap for more steps...
Step 2.2.3.4.1
Rewrite as .
Step 2.2.3.4.2
Simplify the numerator.
Tap for more steps...
Step 2.2.3.4.2.1
Rewrite as .
Tap for more steps...
Step 2.2.3.4.2.1.1
Factor out of .
Step 2.2.3.4.2.1.2
Rewrite as .
Step 2.2.3.4.2.2
Pull terms out from under the radical.
Step 2.2.3.4.3
Simplify the denominator.
Tap for more steps...
Step 2.2.3.4.3.1
Rewrite as .
Tap for more steps...
Step 2.2.3.4.3.1.1
Factor out of .
Step 2.2.3.4.3.1.2
Rewrite as .
Step 2.2.3.4.3.2
Pull terms out from under the radical.
Step 2.2.3.4.4
Multiply by .
Step 2.2.3.4.5
Combine and simplify the denominator.
Tap for more steps...
Step 2.2.3.4.5.1
Multiply by .
Step 2.2.3.4.5.2
Move .
Step 2.2.3.4.5.3
Raise to the power of .
Step 2.2.3.4.5.4
Raise to the power of .
Step 2.2.3.4.5.5
Use the power rule to combine exponents.
Step 2.2.3.4.5.6
Add and .
Step 2.2.3.4.5.7
Rewrite as .
Tap for more steps...
Step 2.2.3.4.5.7.1
Use to rewrite as .
Step 2.2.3.4.5.7.2
Apply the power rule and multiply exponents, .
Step 2.2.3.4.5.7.3
Combine and .
Step 2.2.3.4.5.7.4
Cancel the common factor of .
Tap for more steps...
Step 2.2.3.4.5.7.4.1
Cancel the common factor.
Step 2.2.3.4.5.7.4.2
Rewrite the expression.
Step 2.2.3.4.5.7.5
Evaluate the exponent.
Step 2.2.3.4.6
Simplify the numerator.
Tap for more steps...
Step 2.2.3.4.6.1
Combine using the product rule for radicals.
Step 2.2.3.4.6.2
Multiply by .
Step 2.2.3.4.7
Multiply by .
Step 2.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.2.3.5.1
First, use the positive value of the to find the first solution.
Step 2.2.3.5.2
Next, use the negative value of the to find the second solution.
Step 2.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify .
Tap for more steps...
Step 2.3.2.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.1.1
Remove parentheses.
Step 2.3.2.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.2.1
Simplify .
Tap for more steps...
Step 2.3.2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.2.1.2
Combine and .
Step 2.3.2.2.1.3
Simplify the expression.
Tap for more steps...
Step 2.3.2.2.1.3.1
Combine the numerators over the common denominator.
Step 2.3.2.2.1.3.2
Multiply by .
Step 2.3.2.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.2.1.5
Combine fractions.
Tap for more steps...
Step 2.3.2.2.1.5.1
Combine and .
Step 2.3.2.2.1.5.2
Simplify the expression.
Tap for more steps...
Step 2.3.2.2.1.5.2.1
Combine the numerators over the common denominator.
Step 2.3.2.2.1.5.2.2
Multiply by .
Step 2.3.2.2.1.5.3
Multiply by .
Step 2.3.2.2.1.6
Simplify the numerator.
Tap for more steps...
Step 2.3.2.2.1.6.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.3.2.2.1.6.1.1
Apply the distributive property.
Step 2.3.2.2.1.6.1.2
Apply the distributive property.
Step 2.3.2.2.1.6.1.3
Apply the distributive property.
Step 2.3.2.2.1.6.2
Simplify and combine like terms.
Tap for more steps...
Step 2.3.2.2.1.6.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.6.2.1.1
Multiply by .
Step 2.3.2.2.1.6.2.1.2
Multiply by .
Step 2.3.2.2.1.6.2.1.3
Multiply by .
Step 2.3.2.2.1.6.2.1.4
Multiply .
Tap for more steps...
Step 2.3.2.2.1.6.2.1.4.1
Multiply by .
Step 2.3.2.2.1.6.2.1.4.2
Raise to the power of .
Step 2.3.2.2.1.6.2.1.4.3
Raise to the power of .
Step 2.3.2.2.1.6.2.1.4.4
Use the power rule to combine exponents.
Step 2.3.2.2.1.6.2.1.4.5
Add and .
Step 2.3.2.2.1.6.2.1.5
Rewrite as .
Tap for more steps...
Step 2.3.2.2.1.6.2.1.5.1
Use to rewrite as .
Step 2.3.2.2.1.6.2.1.5.2
Apply the power rule and multiply exponents, .
Step 2.3.2.2.1.6.2.1.5.3
Combine and .
Step 2.3.2.2.1.6.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 2.3.2.2.1.6.2.1.5.4.1
Cancel the common factor.
Step 2.3.2.2.1.6.2.1.5.4.2
Rewrite the expression.
Step 2.3.2.2.1.6.2.1.5.5
Evaluate the exponent.
Step 2.3.2.2.1.6.2.1.6
Multiply by .
Step 2.3.2.2.1.6.2.2
Subtract from .
Step 2.3.2.2.1.6.2.3
Add and .
Step 2.3.2.2.1.6.2.4
Add and .
Step 2.3.2.2.1.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.3.2.2.1.7.1
Multiply by .
Step 2.3.2.2.1.7.2
Cancel the common factor of and .
Tap for more steps...
Step 2.3.2.2.1.7.2.1
Factor out of .
Step 2.3.2.2.1.7.2.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.2.1.7.2.2.1
Factor out of .
Step 2.3.2.2.1.7.2.2.2
Cancel the common factor.
Step 2.3.2.2.1.7.2.2.3
Rewrite the expression.
Step 2.3.2.2.1.8
Rewrite as .
Step 2.3.2.2.1.9
Simplify the numerator.
Tap for more steps...
Step 2.3.2.2.1.9.1
Rewrite as .
Tap for more steps...
Step 2.3.2.2.1.9.1.1
Factor out of .
Step 2.3.2.2.1.9.1.2
Rewrite as .
Step 2.3.2.2.1.9.2
Pull terms out from under the radical.
Step 2.3.2.2.1.10
Simplify the denominator.
Tap for more steps...
Step 2.3.2.2.1.10.1
Rewrite as .
Tap for more steps...
Step 2.3.2.2.1.10.1.1
Factor out of .
Step 2.3.2.2.1.10.1.2
Rewrite as .
Step 2.3.2.2.1.10.2
Pull terms out from under the radical.
Step 2.3.2.2.1.11
Multiply by .
Step 2.3.2.2.1.12
Combine and simplify the denominator.
Tap for more steps...
Step 2.3.2.2.1.12.1
Multiply by .
Step 2.3.2.2.1.12.2
Move .
Step 2.3.2.2.1.12.3
Raise to the power of .
Step 2.3.2.2.1.12.4
Raise to the power of .
Step 2.3.2.2.1.12.5
Use the power rule to combine exponents.
Step 2.3.2.2.1.12.6
Add and .
Step 2.3.2.2.1.12.7
Rewrite as .
Tap for more steps...
Step 2.3.2.2.1.12.7.1
Use to rewrite as .
Step 2.3.2.2.1.12.7.2
Apply the power rule and multiply exponents, .
Step 2.3.2.2.1.12.7.3
Combine and .
Step 2.3.2.2.1.12.7.4
Cancel the common factor of .
Tap for more steps...
Step 2.3.2.2.1.12.7.4.1
Cancel the common factor.
Step 2.3.2.2.1.12.7.4.2
Rewrite the expression.
Step 2.3.2.2.1.12.7.5
Evaluate the exponent.
Step 2.3.2.2.1.13
Simplify the numerator.
Tap for more steps...
Step 2.3.2.2.1.13.1
Combine using the product rule for radicals.
Step 2.3.2.2.1.13.2
Multiply by .
Step 2.3.2.2.1.14
Multiply by .
Step 2.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify .
Tap for more steps...
Step 2.4.2.1
Simplify the left side.
Tap for more steps...
Step 2.4.2.1.1
Remove parentheses.
Step 2.4.2.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.2.1
Simplify .
Tap for more steps...
Step 2.4.2.2.1.1
Multiply .
Tap for more steps...
Step 2.4.2.2.1.1.1
Multiply by .
Step 2.4.2.2.1.1.2
Multiply by .
Step 2.4.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.4.2.2.1.3
Combine and .
Step 2.4.2.2.1.4
Simplify the expression.
Tap for more steps...
Step 2.4.2.2.1.4.1
Combine the numerators over the common denominator.
Step 2.4.2.2.1.4.2
Multiply by .
Step 2.4.2.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 2.4.2.2.1.6
Combine fractions.
Tap for more steps...
Step 2.4.2.2.1.6.1
Combine and .
Step 2.4.2.2.1.6.2
Simplify the expression.
Tap for more steps...
Step 2.4.2.2.1.6.2.1
Combine the numerators over the common denominator.
Step 2.4.2.2.1.6.2.2
Multiply by .
Step 2.4.2.2.1.6.3
Multiply by .
Step 2.4.2.2.1.7
Simplify the numerator.
Tap for more steps...
Step 2.4.2.2.1.7.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.4.2.2.1.7.1.1
Apply the distributive property.
Step 2.4.2.2.1.7.1.2
Apply the distributive property.
Step 2.4.2.2.1.7.1.3
Apply the distributive property.
Step 2.4.2.2.1.7.2
Simplify and combine like terms.
Tap for more steps...
Step 2.4.2.2.1.7.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.7.2.1.1
Multiply by .
Step 2.4.2.2.1.7.2.1.2
Multiply by .
Step 2.4.2.2.1.7.2.1.3
Multiply by .
Step 2.4.2.2.1.7.2.1.4
Multiply .
Tap for more steps...
Step 2.4.2.2.1.7.2.1.4.1
Multiply by .
Step 2.4.2.2.1.7.2.1.4.2
Raise to the power of .
Step 2.4.2.2.1.7.2.1.4.3
Raise to the power of .
Step 2.4.2.2.1.7.2.1.4.4
Use the power rule to combine exponents.
Step 2.4.2.2.1.7.2.1.4.5
Add and .
Step 2.4.2.2.1.7.2.1.5
Rewrite as .
Tap for more steps...
Step 2.4.2.2.1.7.2.1.5.1
Use to rewrite as .
Step 2.4.2.2.1.7.2.1.5.2
Apply the power rule and multiply exponents, .
Step 2.4.2.2.1.7.2.1.5.3
Combine and .
Step 2.4.2.2.1.7.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.2.1.7.2.1.5.4.1
Cancel the common factor.
Step 2.4.2.2.1.7.2.1.5.4.2
Rewrite the expression.
Step 2.4.2.2.1.7.2.1.5.5
Evaluate the exponent.
Step 2.4.2.2.1.7.2.1.6
Multiply by .
Step 2.4.2.2.1.7.2.2
Subtract from .
Step 2.4.2.2.1.7.2.3
Subtract from .
Step 2.4.2.2.1.7.2.4
Add and .
Step 2.4.2.2.1.8
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.4.2.2.1.8.1
Multiply by .
Step 2.4.2.2.1.8.2
Cancel the common factor of and .
Tap for more steps...
Step 2.4.2.2.1.8.2.1
Factor out of .
Step 2.4.2.2.1.8.2.2
Cancel the common factors.
Tap for more steps...
Step 2.4.2.2.1.8.2.2.1
Factor out of .
Step 2.4.2.2.1.8.2.2.2
Cancel the common factor.
Step 2.4.2.2.1.8.2.2.3
Rewrite the expression.
Step 2.4.2.2.1.9
Rewrite as .
Step 2.4.2.2.1.10
Simplify the numerator.
Tap for more steps...
Step 2.4.2.2.1.10.1
Rewrite as .
Tap for more steps...
Step 2.4.2.2.1.10.1.1
Factor out of .
Step 2.4.2.2.1.10.1.2
Rewrite as .
Step 2.4.2.2.1.10.2
Pull terms out from under the radical.
Step 2.4.2.2.1.11
Simplify the denominator.
Tap for more steps...
Step 2.4.2.2.1.11.1
Rewrite as .
Tap for more steps...
Step 2.4.2.2.1.11.1.1
Factor out of .
Step 2.4.2.2.1.11.1.2
Rewrite as .
Step 2.4.2.2.1.11.2
Pull terms out from under the radical.
Step 2.4.2.2.1.12
Multiply by .
Step 2.4.2.2.1.13
Combine and simplify the denominator.
Tap for more steps...
Step 2.4.2.2.1.13.1
Multiply by .
Step 2.4.2.2.1.13.2
Move .
Step 2.4.2.2.1.13.3
Raise to the power of .
Step 2.4.2.2.1.13.4
Raise to the power of .
Step 2.4.2.2.1.13.5
Use the power rule to combine exponents.
Step 2.4.2.2.1.13.6
Add and .
Step 2.4.2.2.1.13.7
Rewrite as .
Tap for more steps...
Step 2.4.2.2.1.13.7.1
Use to rewrite as .
Step 2.4.2.2.1.13.7.2
Apply the power rule and multiply exponents, .
Step 2.4.2.2.1.13.7.3
Combine and .
Step 2.4.2.2.1.13.7.4
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.2.1.13.7.4.1
Cancel the common factor.
Step 2.4.2.2.1.13.7.4.2
Rewrite the expression.
Step 2.4.2.2.1.13.7.5
Evaluate the exponent.
Step 2.4.2.2.1.14
Simplify the numerator.
Tap for more steps...
Step 2.4.2.2.1.14.1
Combine using the product rule for radicals.
Step 2.4.2.2.1.14.2
Multiply by .
Step 2.4.2.2.1.15
Multiply by .
Step 3
Solve the system .
Tap for more steps...
Step 3.1
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.1
Simplify .
Tap for more steps...
Step 3.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 3.1.2.1.1.1
Apply the product rule to .
Step 3.1.2.1.1.2
Raise to the power of .
Step 3.1.2.1.1.3
Rewrite as .
Tap for more steps...
Step 3.1.2.1.1.3.1
Use to rewrite as .
Step 3.1.2.1.1.3.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.3.3
Combine and .
Step 3.1.2.1.1.3.4
Cancel the common factor of .
Tap for more steps...
Step 3.1.2.1.1.3.4.1
Cancel the common factor.
Step 3.1.2.1.1.3.4.2
Rewrite the expression.
Step 3.1.2.1.1.3.5
Simplify.
Step 3.1.2.1.1.4
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.2.1.1.4.1
Apply the distributive property.
Step 3.1.2.1.1.4.2
Apply the distributive property.
Step 3.1.2.1.1.4.3
Apply the distributive property.
Step 3.1.2.1.1.5
Simplify and combine like terms.
Tap for more steps...
Step 3.1.2.1.1.5.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1.5.1.1
Multiply by .
Step 3.1.2.1.1.5.1.2
Multiply by .
Step 3.1.2.1.1.5.1.3
Move to the left of .
Step 3.1.2.1.1.5.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.2.1.1.5.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.1.2.1.1.5.1.5.1
Move .
Step 3.1.2.1.1.5.1.5.2
Multiply by .
Step 3.1.2.1.1.5.2
Add and .
Step 3.1.2.1.1.5.3
Add and .
Step 3.1.2.1.1.6
Multiply by .
Step 3.1.2.1.1.7
Rewrite as .
Step 3.1.2.1.1.8
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.1.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 3.1.2.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 3.1.2.1.4.1
Multiply by .
Step 3.1.2.1.4.2
Multiply by .
Step 3.1.2.1.4.3
Multiply by .
Step 3.1.2.1.4.4
Multiply by .
Step 3.1.2.1.5
Combine the numerators over the common denominator.
Step 3.1.2.1.6
Simplify the numerator.
Tap for more steps...
Step 3.1.2.1.6.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.2.1.6.1.1
Apply the distributive property.
Step 3.1.2.1.6.1.2
Apply the distributive property.
Step 3.1.2.1.6.1.3
Apply the distributive property.
Step 3.1.2.1.6.2
Simplify and combine like terms.
Tap for more steps...
Step 3.1.2.1.6.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.6.2.1.1
Multiply by .
Step 3.1.2.1.6.2.1.2
Multiply by .
Step 3.1.2.1.6.2.1.3
Move to the left of .
Step 3.1.2.1.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.2.1.6.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 3.1.2.1.6.2.1.5.1
Move .
Step 3.1.2.1.6.2.1.5.2
Multiply by .
Step 3.1.2.1.6.2.2
Add and .
Step 3.1.2.1.6.2.3
Add and .
Step 3.1.2.1.6.3
Apply the distributive property.
Step 3.1.2.1.6.4
Multiply by .
Step 3.1.2.1.6.5
Multiply by .
Step 3.1.2.1.6.6
Move to the left of .
Step 3.1.2.1.6.7
Add and .
Step 3.1.2.1.6.8
Factor out of .
Tap for more steps...
Step 3.1.2.1.6.8.1
Factor out of .
Step 3.1.2.1.6.8.2
Factor out of .
Step 3.1.2.1.6.8.3
Factor out of .
Step 3.2
Solve for in .
Tap for more steps...
Step 3.2.1
Multiply both sides by .
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.2.1.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1.1.1
Cancel the common factor.
Step 3.2.2.1.1.1.2
Rewrite the expression.
Step 3.2.2.1.1.2
Apply the distributive property.
Step 3.2.2.1.1.3
Simplify the expression.
Tap for more steps...
Step 3.2.2.1.1.3.1
Multiply by .
Step 3.2.2.1.1.3.2
Multiply by .
Step 3.2.2.1.1.3.3
Reorder and .
Step 3.2.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.2.1
Multiply by .
Step 3.2.3
Solve for .
Tap for more steps...
Step 3.2.3.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.2.3.1.1
Subtract from both sides of the equation.
Step 3.2.3.1.2
Subtract from .
Step 3.2.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.3.2.1
Divide each term in by .
Step 3.2.3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.3.2.2.1.1
Cancel the common factor.
Step 3.2.3.2.2.1.2
Divide by .
Step 3.2.3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.2.3.1
Dividing two negative values results in a positive value.
Step 3.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.3.4
Simplify .
Tap for more steps...
Step 3.2.3.4.1
Rewrite as .
Step 3.2.3.4.2
Simplify the numerator.
Tap for more steps...
Step 3.2.3.4.2.1
Rewrite as .
Tap for more steps...
Step 3.2.3.4.2.1.1
Factor out of .
Step 3.2.3.4.2.1.2
Rewrite as .
Step 3.2.3.4.2.2
Pull terms out from under the radical.
Step 3.2.3.4.3
Simplify the denominator.
Tap for more steps...
Step 3.2.3.4.3.1
Rewrite as .
Tap for more steps...
Step 3.2.3.4.3.1.1
Factor out of .
Step 3.2.3.4.3.1.2
Rewrite as .
Step 3.2.3.4.3.2
Pull terms out from under the radical.
Step 3.2.3.4.4
Multiply by .
Step 3.2.3.4.5
Combine and simplify the denominator.
Tap for more steps...
Step 3.2.3.4.5.1
Multiply by .
Step 3.2.3.4.5.2
Move .
Step 3.2.3.4.5.3
Raise to the power of .
Step 3.2.3.4.5.4
Raise to the power of .
Step 3.2.3.4.5.5
Use the power rule to combine exponents.
Step 3.2.3.4.5.6
Add and .
Step 3.2.3.4.5.7
Rewrite as .
Tap for more steps...
Step 3.2.3.4.5.7.1
Use to rewrite as .
Step 3.2.3.4.5.7.2
Apply the power rule and multiply exponents, .
Step 3.2.3.4.5.7.3
Combine and .
Step 3.2.3.4.5.7.4
Cancel the common factor of .
Tap for more steps...
Step 3.2.3.4.5.7.4.1
Cancel the common factor.
Step 3.2.3.4.5.7.4.2
Rewrite the expression.
Step 3.2.3.4.5.7.5
Evaluate the exponent.
Step 3.2.3.4.6
Simplify the numerator.
Tap for more steps...
Step 3.2.3.4.6.1
Combine using the product rule for radicals.
Step 3.2.3.4.6.2
Multiply by .
Step 3.2.3.4.7
Multiply by .
Step 3.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.2.3.5.1
First, use the positive value of the to find the first solution.
Step 3.2.3.5.2
Next, use the negative value of the to find the second solution.
Step 3.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify .
Tap for more steps...
Step 3.3.2.1
Simplify the left side.
Tap for more steps...
Step 3.3.2.1.1
Remove parentheses.
Step 3.3.2.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.2.1
Simplify .
Tap for more steps...
Step 3.3.2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.2.1.2
Combine and .
Step 3.3.2.2.1.3
Simplify the expression.
Tap for more steps...
Step 3.3.2.2.1.3.1
Combine the numerators over the common denominator.
Step 3.3.2.2.1.3.2
Multiply by .
Step 3.3.2.2.1.4
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.2.1.5
Combine fractions.
Tap for more steps...
Step 3.3.2.2.1.5.1
Combine and .
Step 3.3.2.2.1.5.2
Simplify the expression.
Tap for more steps...
Step 3.3.2.2.1.5.2.1
Combine the numerators over the common denominator.
Step 3.3.2.2.1.5.2.2
Multiply by .
Step 3.3.2.2.1.5.3
Multiply by .
Step 3.3.2.2.1.6
Simplify the numerator.
Tap for more steps...
Step 3.3.2.2.1.6.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.3.2.2.1.6.1.1
Apply the distributive property.
Step 3.3.2.2.1.6.1.2
Apply the distributive property.
Step 3.3.2.2.1.6.1.3
Apply the distributive property.
Step 3.3.2.2.1.6.2
Simplify and combine like terms.
Tap for more steps...
Step 3.3.2.2.1.6.2.1
Simplify each term.
Tap for more steps...
Step 3.3.2.2.1.6.2.1.1
Multiply by .
Step 3.3.2.2.1.6.2.1.2
Multiply by .
Step 3.3.2.2.1.6.2.1.3
Multiply by .
Step 3.3.2.2.1.6.2.1.4
Multiply .
Tap for more steps...
Step 3.3.2.2.1.6.2.1.4.1
Multiply by .
Step 3.3.2.2.1.6.2.1.4.2
Raise to the power of .
Step 3.3.2.2.1.6.2.1.4.3
Raise to the power of .
Step 3.3.2.2.1.6.2.1.4.4
Use the power rule to combine exponents.
Step 3.3.2.2.1.6.2.1.4.5
Add and .
Step 3.3.2.2.1.6.2.1.5
Rewrite as .
Tap for more steps...
Step 3.3.2.2.1.6.2.1.5.1
Use to rewrite as .
Step 3.3.2.2.1.6.2.1.5.2
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.6.2.1.5.3
Combine and .
Step 3.3.2.2.1.6.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.2.1.6.2.1.5.4.1
Cancel the common factor.
Step 3.3.2.2.1.6.2.1.5.4.2
Rewrite the expression.
Step 3.3.2.2.1.6.2.1.5.5
Evaluate the exponent.
Step 3.3.2.2.1.6.2.1.6
Multiply by .
Step 3.3.2.2.1.6.2.2
Subtract from .
Step 3.3.2.2.1.6.2.3
Add and .
Step 3.3.2.2.1.6.2.4
Add and .
Step 3.3.2.2.1.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.3.2.2.1.7.1
Multiply by .
Step 3.3.2.2.1.7.2
Cancel the common factor of and .
Tap for more steps...
Step 3.3.2.2.1.7.2.1
Factor out of .
Step 3.3.2.2.1.7.2.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.2.1.7.2.2.1
Factor out of .
Step 3.3.2.2.1.7.2.2.2
Cancel the common factor.
Step 3.3.2.2.1.7.2.2.3
Rewrite the expression.
Step 3.3.2.2.1.8
Rewrite as .
Step 3.3.2.2.1.9
Simplify the numerator.
Tap for more steps...
Step 3.3.2.2.1.9.1
Rewrite as .
Tap for more steps...
Step 3.3.2.2.1.9.1.1
Factor out of .
Step 3.3.2.2.1.9.1.2
Rewrite as .
Step 3.3.2.2.1.9.2
Pull terms out from under the radical.
Step 3.3.2.2.1.10
Simplify the denominator.
Tap for more steps...
Step 3.3.2.2.1.10.1
Rewrite as .
Tap for more steps...
Step 3.3.2.2.1.10.1.1
Factor out of .
Step 3.3.2.2.1.10.1.2
Rewrite as .
Step 3.3.2.2.1.10.2
Pull terms out from under the radical.
Step 3.3.2.2.1.11
Multiply by .
Step 3.3.2.2.1.12
Combine and simplify the denominator.
Tap for more steps...
Step 3.3.2.2.1.12.1
Multiply by .
Step 3.3.2.2.1.12.2
Move .
Step 3.3.2.2.1.12.3
Raise to the power of .
Step 3.3.2.2.1.12.4
Raise to the power of .
Step 3.3.2.2.1.12.5
Use the power rule to combine exponents.
Step 3.3.2.2.1.12.6
Add and .
Step 3.3.2.2.1.12.7
Rewrite as .
Tap for more steps...
Step 3.3.2.2.1.12.7.1
Use to rewrite as .
Step 3.3.2.2.1.12.7.2
Apply the power rule and multiply exponents, .
Step 3.3.2.2.1.12.7.3
Combine and .
Step 3.3.2.2.1.12.7.4
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.2.1.12.7.4.1
Cancel the common factor.
Step 3.3.2.2.1.12.7.4.2
Rewrite the expression.
Step 3.3.2.2.1.12.7.5
Evaluate the exponent.
Step 3.3.2.2.1.13
Simplify the numerator.
Tap for more steps...
Step 3.3.2.2.1.13.1
Combine using the product rule for radicals.
Step 3.3.2.2.1.13.2
Multiply by .
Step 3.3.2.2.1.14
Multiply by .
Step 3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify .
Tap for more steps...
Step 3.4.2.1
Simplify the left side.
Tap for more steps...
Step 3.4.2.1.1
Remove parentheses.
Step 3.4.2.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.2.1
Simplify .
Tap for more steps...
Step 3.4.2.2.1.1
Multiply .
Tap for more steps...
Step 3.4.2.2.1.1.1
Multiply by .
Step 3.4.2.2.1.1.2
Multiply by .
Step 3.4.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.2.1.3
Combine and .
Step 3.4.2.2.1.4
Simplify the expression.
Tap for more steps...
Step 3.4.2.2.1.4.1
Combine the numerators over the common denominator.
Step 3.4.2.2.1.4.2
Multiply by .
Step 3.4.2.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.2.1.6
Combine fractions.
Tap for more steps...
Step 3.4.2.2.1.6.1
Combine and .
Step 3.4.2.2.1.6.2
Simplify the expression.
Tap for more steps...
Step 3.4.2.2.1.6.2.1
Combine the numerators over the common denominator.
Step 3.4.2.2.1.6.2.2
Multiply by .
Step 3.4.2.2.1.6.3
Multiply by .
Step 3.4.2.2.1.7
Simplify the numerator.
Tap for more steps...
Step 3.4.2.2.1.7.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.2.2.1.7.1.1
Apply the distributive property.
Step 3.4.2.2.1.7.1.2
Apply the distributive property.
Step 3.4.2.2.1.7.1.3
Apply the distributive property.
Step 3.4.2.2.1.7.2
Simplify and combine like terms.
Tap for more steps...
Step 3.4.2.2.1.7.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.2.1.7.2.1.1
Multiply by .
Step 3.4.2.2.1.7.2.1.2
Multiply by .
Step 3.4.2.2.1.7.2.1.3
Multiply by .
Step 3.4.2.2.1.7.2.1.4
Multiply .
Tap for more steps...
Step 3.4.2.2.1.7.2.1.4.1
Multiply by .
Step 3.4.2.2.1.7.2.1.4.2
Raise to the power of .
Step 3.4.2.2.1.7.2.1.4.3
Raise to the power of .
Step 3.4.2.2.1.7.2.1.4.4
Use the power rule to combine exponents.
Step 3.4.2.2.1.7.2.1.4.5
Add and .
Step 3.4.2.2.1.7.2.1.5
Rewrite as .
Tap for more steps...
Step 3.4.2.2.1.7.2.1.5.1
Use to rewrite as .
Step 3.4.2.2.1.7.2.1.5.2
Apply the power rule and multiply exponents, .
Step 3.4.2.2.1.7.2.1.5.3
Combine and .
Step 3.4.2.2.1.7.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.2.1.7.2.1.5.4.1
Cancel the common factor.
Step 3.4.2.2.1.7.2.1.5.4.2
Rewrite the expression.
Step 3.4.2.2.1.7.2.1.5.5
Evaluate the exponent.
Step 3.4.2.2.1.7.2.1.6
Multiply by .
Step 3.4.2.2.1.7.2.2
Subtract from .
Step 3.4.2.2.1.7.2.3
Subtract from .
Step 3.4.2.2.1.7.2.4
Add and .
Step 3.4.2.2.1.8
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.4.2.2.1.8.1
Multiply by .
Step 3.4.2.2.1.8.2
Cancel the common factor of and .
Tap for more steps...
Step 3.4.2.2.1.8.2.1
Factor out of .
Step 3.4.2.2.1.8.2.2
Cancel the common factors.
Tap for more steps...
Step 3.4.2.2.1.8.2.2.1
Factor out of .
Step 3.4.2.2.1.8.2.2.2
Cancel the common factor.
Step 3.4.2.2.1.8.2.2.3
Rewrite the expression.
Step 3.4.2.2.1.9
Rewrite as .
Step 3.4.2.2.1.10
Simplify the numerator.
Tap for more steps...
Step 3.4.2.2.1.10.1
Rewrite as .
Tap for more steps...
Step 3.4.2.2.1.10.1.1
Factor out of .
Step 3.4.2.2.1.10.1.2
Rewrite as .
Step 3.4.2.2.1.10.2
Pull terms out from under the radical.
Step 3.4.2.2.1.11
Simplify the denominator.
Tap for more steps...
Step 3.4.2.2.1.11.1
Rewrite as .
Tap for more steps...
Step 3.4.2.2.1.11.1.1
Factor out of .
Step 3.4.2.2.1.11.1.2
Rewrite as .
Step 3.4.2.2.1.11.2
Pull terms out from under the radical.
Step 3.4.2.2.1.12
Multiply by .
Step 3.4.2.2.1.13
Combine and simplify the denominator.
Tap for more steps...
Step 3.4.2.2.1.13.1
Multiply by .
Step 3.4.2.2.1.13.2
Move .
Step 3.4.2.2.1.13.3
Raise to the power of .
Step 3.4.2.2.1.13.4
Raise to the power of .
Step 3.4.2.2.1.13.5
Use the power rule to combine exponents.
Step 3.4.2.2.1.13.6
Add and .
Step 3.4.2.2.1.13.7
Rewrite as .
Tap for more steps...
Step 3.4.2.2.1.13.7.1
Use to rewrite as .
Step 3.4.2.2.1.13.7.2
Apply the power rule and multiply exponents, .
Step 3.4.2.2.1.13.7.3
Combine and .
Step 3.4.2.2.1.13.7.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.2.1.13.7.4.1
Cancel the common factor.
Step 3.4.2.2.1.13.7.4.2
Rewrite the expression.
Step 3.4.2.2.1.13.7.5
Evaluate the exponent.
Step 3.4.2.2.1.14
Simplify the numerator.
Tap for more steps...
Step 3.4.2.2.1.14.1
Combine using the product rule for radicals.
Step 3.4.2.2.1.14.2
Multiply by .
Step 3.4.2.2.1.15
Multiply by .
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6