Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide by .
Step 1.2.3.1.2
Cancel the common factor of and .
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factors.
Step 1.2.3.1.2.2.1
Factor out of .
Step 1.2.3.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.2.2.3
Rewrite the expression.
Step 1.2.3.1.3
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply by .
Step 2.2.1.1.3.1.2
Cancel the common factor of .
Step 2.2.1.1.3.1.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.3.1.2.2
Factor out of .
Step 2.2.1.1.3.1.2.3
Cancel the common factor.
Step 2.2.1.1.3.1.2.4
Rewrite the expression.
Step 2.2.1.1.3.1.3
Multiply by .
Step 2.2.1.1.3.1.4
Cancel the common factor of .
Step 2.2.1.1.3.1.4.1
Move the leading negative in into the numerator.
Step 2.2.1.1.3.1.4.2
Factor out of .
Step 2.2.1.1.3.1.4.3
Cancel the common factor.
Step 2.2.1.1.3.1.4.4
Rewrite the expression.
Step 2.2.1.1.3.1.5
Multiply by .
Step 2.2.1.1.3.1.6
Multiply .
Step 2.2.1.1.3.1.6.1
Multiply by .
Step 2.2.1.1.3.1.6.2
Multiply by .
Step 2.2.1.1.3.1.6.3
Multiply by .
Step 2.2.1.1.3.1.6.4
Raise to the power of .
Step 2.2.1.1.3.1.6.5
Raise to the power of .
Step 2.2.1.1.3.1.6.6
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.6.7
Add and .
Step 2.2.1.1.3.1.6.8
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.4
Simplify each term.
Step 2.2.1.4.1
Simplify the numerator.
Step 2.2.1.4.1.1
Factor out of .
Step 2.2.1.4.1.1.1
Multiply by .
Step 2.2.1.4.1.1.2
Factor out of .
Step 2.2.1.4.1.1.3
Factor out of .
Step 2.2.1.4.1.2
Multiply by .
Step 2.2.1.4.1.3
Subtract from .
Step 2.2.1.4.2
Move to the left of .
Step 2.2.1.4.3
Move the negative in front of the fraction.
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Multiply through by the least common denominator , then simplify.
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Simplify.
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Cancel the common factor of .
Step 3.2.2.2.1
Move the leading negative in into the numerator.
Step 3.2.2.2.2
Cancel the common factor.
Step 3.2.2.2.3
Rewrite the expression.
Step 3.2.2.3
Multiply by .
Step 3.2.3
Reorder and .
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Add and .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.4.1
Factor out of .
Step 3.5.1.4.2
Rewrite as .
Step 3.5.1.5
Pull terms out from under the radical.
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.5.4
Move the negative in front of the fraction.
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Add and .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.4.1
Factor out of .
Step 3.6.1.4.2
Rewrite as .
Step 3.6.1.5
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Move the negative in front of the fraction.
Step 3.6.5
Change the to .
Step 3.7
Simplify the expression to solve for the portion of the .
Step 3.7.1
Simplify the numerator.
Step 3.7.1.1
Raise to the power of .
Step 3.7.1.2
Multiply .
Step 3.7.1.2.1
Multiply by .
Step 3.7.1.2.2
Multiply by .
Step 3.7.1.3
Add and .
Step 3.7.1.4
Rewrite as .
Step 3.7.1.4.1
Factor out of .
Step 3.7.1.4.2
Rewrite as .
Step 3.7.1.5
Pull terms out from under the radical.
Step 3.7.2
Multiply by .
Step 3.7.3
Simplify .
Step 3.7.4
Move the negative in front of the fraction.
Step 3.7.5
Change the to .
Step 3.8
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Multiply by .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.3
Cancel the common factor of and .
Step 4.2.1.1.3.1
Factor out of .
Step 4.2.1.1.3.2
Factor out of .
Step 4.2.1.1.3.3
Factor out of .
Step 4.2.1.1.3.4
Cancel the common factors.
Step 4.2.1.1.3.4.1
Factor out of .
Step 4.2.1.1.3.4.2
Cancel the common factor.
Step 4.2.1.1.3.4.3
Rewrite the expression.
Step 4.2.1.1.4
Multiply .
Step 4.2.1.1.4.1
Multiply by .
Step 4.2.1.1.4.2
Multiply by .
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine fractions.
Step 4.2.1.3.1
Combine and .
Step 4.2.1.3.2
Combine the numerators over the common denominator.
Step 4.2.1.4
Simplify the numerator.
Step 4.2.1.4.1
Multiply by .
Step 4.2.1.4.2
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.1.2
Multiply .
Step 5.2.1.1.2.1
Multiply by .
Step 5.2.1.1.2.2
Multiply by .
Step 5.2.1.1.3
Cancel the common factor of and .
Step 5.2.1.1.3.1
Factor out of .
Step 5.2.1.1.3.2
Factor out of .
Step 5.2.1.1.3.3
Factor out of .
Step 5.2.1.1.3.4
Cancel the common factors.
Step 5.2.1.1.3.4.1
Factor out of .
Step 5.2.1.1.3.4.2
Cancel the common factor.
Step 5.2.1.1.3.4.3
Rewrite the expression.
Step 5.2.1.1.4
Multiply .
Step 5.2.1.1.4.1
Multiply by .
Step 5.2.1.1.4.2
Multiply by .
Step 5.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.1.3
Combine fractions.
Step 5.2.1.3.1
Combine and .
Step 5.2.1.3.2
Combine the numerators over the common denominator.
Step 5.2.1.4
Simplify the numerator.
Step 5.2.1.4.1
Multiply by .
Step 5.2.1.4.2
Add and .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8