Precalculus Examples

Solve by Substitution x^2-4y^2-20x-64y-172=0 , 16x^2+4y^2-320x+64y+1600=0
,
Step 1
Solve for in .
Tap for more steps...
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify the numerator.
Tap for more steps...
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Tap for more steps...
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Multiply by .
Step 1.3.1.5
Add and .
Step 1.3.1.6
Factor out of .
Tap for more steps...
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.1.7
Rewrite as .
Tap for more steps...
Step 1.3.1.7.1
Rewrite as .
Step 1.3.1.7.2
Rewrite as .
Step 1.3.1.8
Pull terms out from under the radical.
Step 1.3.1.9
Raise to the power of .
Step 1.3.2
Multiply by .
Step 1.3.3
Simplify .
Step 1.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Tap for more steps...
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.4.3
Multiply by .
Step 1.4.1.5
Add and .
Step 1.4.1.6
Factor out of .
Tap for more steps...
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.1.7
Rewrite as .
Tap for more steps...
Step 1.4.1.7.1
Rewrite as .
Step 1.4.1.7.2
Rewrite as .
Step 1.4.1.8
Pull terms out from under the radical.
Step 1.4.1.9
Raise to the power of .
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.4.4
Change the to .
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Tap for more steps...
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.4.3
Multiply by .
Step 1.5.1.5
Add and .
Step 1.5.1.6
Factor out of .
Tap for more steps...
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.1.7
Rewrite as .
Tap for more steps...
Step 1.5.1.7.1
Rewrite as .
Step 1.5.1.7.2
Rewrite as .
Step 1.5.1.8
Pull terms out from under the radical.
Step 1.5.1.9
Raise to the power of .
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Change the to .
Step 1.6
The final answer is the combination of both solutions.
Step 2
Solve the system .
Tap for more steps...
Step 2.1
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Tap for more steps...
Step 2.1.2.1
Simplify .
Tap for more steps...
Step 2.1.2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1.1
Rewrite as .
Step 2.1.2.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.1.2.1
Apply the distributive property.
Step 2.1.2.1.1.2.2
Apply the distributive property.
Step 2.1.2.1.1.2.3
Apply the distributive property.
Step 2.1.2.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1.3.1.1
Multiply by .
Step 2.1.2.1.1.3.1.2
Multiply by .
Step 2.1.2.1.1.3.1.3
Multiply by .
Step 2.1.2.1.1.3.1.4
Multiply .
Tap for more steps...
Step 2.1.2.1.1.3.1.4.1
Multiply by .
Step 2.1.2.1.1.3.1.4.2
Raise to the power of .
Step 2.1.2.1.1.3.1.4.3
Raise to the power of .
Step 2.1.2.1.1.3.1.4.4
Use the power rule to combine exponents.
Step 2.1.2.1.1.3.1.4.5
Add and .
Step 2.1.2.1.1.3.1.5
Rewrite as .
Tap for more steps...
Step 2.1.2.1.1.3.1.5.1
Use to rewrite as .
Step 2.1.2.1.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.3.1.5.3
Combine and .
Step 2.1.2.1.1.3.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 2.1.2.1.1.3.1.5.4.1
Cancel the common factor.
Step 2.1.2.1.1.3.1.5.4.2
Rewrite the expression.
Step 2.1.2.1.1.3.1.5.5
Simplify.
Step 2.1.2.1.1.3.1.6
Apply the distributive property.
Step 2.1.2.1.1.3.1.7
Simplify.
Tap for more steps...
Step 2.1.2.1.1.3.1.7.1
Multiply by .
Step 2.1.2.1.1.3.1.7.2
Multiply by .
Step 2.1.2.1.1.3.2
Add and .
Step 2.1.2.1.1.3.3
Add and .
Step 2.1.2.1.1.4
Apply the distributive property.
Step 2.1.2.1.1.5
Simplify.
Tap for more steps...
Step 2.1.2.1.1.5.1
Multiply by .
Step 2.1.2.1.1.5.2
Multiply by .
Step 2.1.2.1.1.5.3
Multiply by .
Step 2.1.2.1.1.5.4
Multiply by .
Step 2.1.2.1.1.6
Apply the distributive property.
Step 2.1.2.1.1.7
Multiply by .
Step 2.1.2.1.1.8
Multiply by .
Step 2.1.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.1.2.1.2.1
Combine the opposite terms in .
Tap for more steps...
Step 2.1.2.1.2.1.1
Subtract from .
Step 2.1.2.1.2.1.2
Add and .
Step 2.1.2.1.2.2
Subtract from .
Step 2.1.2.1.2.3
Add and .
Step 2.1.2.1.2.4
Add and .
Step 2.1.2.1.2.5
Add and .
Step 2.2
Solve for in .
Tap for more steps...
Step 2.2.1
Factor the left side of the equation.
Tap for more steps...
Step 2.2.1.1
Factor out of .
Tap for more steps...
Step 2.2.1.1.1
Factor out of .
Step 2.2.1.1.2
Factor out of .
Step 2.2.1.1.3
Factor out of .
Step 2.2.1.1.4
Factor out of .
Step 2.2.1.1.5
Factor out of .
Step 2.2.1.2
Factor using the perfect square rule.
Tap for more steps...
Step 2.2.1.2.1
Rewrite as .
Step 2.2.1.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.2.1.2.3
Rewrite the polynomial.
Step 2.2.1.2.4
Factor using the perfect square trinomial rule , where and .
Step 2.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.2.1
Divide each term in by .
Step 2.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.2.1.1
Cancel the common factor.
Step 2.2.2.2.1.2
Divide by .
Step 2.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.2.3.1
Divide by .
Step 2.2.3
Set the equal to .
Step 2.2.4
Subtract from both sides of the equation.
Step 2.3
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify .
Tap for more steps...
Step 2.3.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.1.1.1
Raise to the power of .
Step 2.3.2.1.1.2
Multiply by .
Step 2.3.2.1.1.3
Subtract from .
Step 2.3.2.1.1.4
Add and .
Step 2.3.2.1.1.5
Rewrite as .
Step 2.3.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3.2.1.1.7
Multiply by .
Step 2.3.2.1.2
Add and .
Step 3
Solve the system .
Tap for more steps...
Step 3.1
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.1
Simplify .
Tap for more steps...
Step 3.1.2.1.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1.1
Rewrite as .
Step 3.1.2.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.2.1.1.2.1
Apply the distributive property.
Step 3.1.2.1.1.2.2
Apply the distributive property.
Step 3.1.2.1.1.2.3
Apply the distributive property.
Step 3.1.2.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.1.2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1.3.1.1
Multiply by .
Step 3.1.2.1.1.3.1.2
Multiply by .
Step 3.1.2.1.1.3.1.3
Multiply by .
Step 3.1.2.1.1.3.1.4
Multiply .
Tap for more steps...
Step 3.1.2.1.1.3.1.4.1
Multiply by .
Step 3.1.2.1.1.3.1.4.2
Raise to the power of .
Step 3.1.2.1.1.3.1.4.3
Raise to the power of .
Step 3.1.2.1.1.3.1.4.4
Use the power rule to combine exponents.
Step 3.1.2.1.1.3.1.4.5
Add and .
Step 3.1.2.1.1.3.1.5
Rewrite as .
Tap for more steps...
Step 3.1.2.1.1.3.1.5.1
Use to rewrite as .
Step 3.1.2.1.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.3.1.5.3
Combine and .
Step 3.1.2.1.1.3.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 3.1.2.1.1.3.1.5.4.1
Cancel the common factor.
Step 3.1.2.1.1.3.1.5.4.2
Rewrite the expression.
Step 3.1.2.1.1.3.1.5.5
Simplify.
Step 3.1.2.1.1.3.1.6
Apply the distributive property.
Step 3.1.2.1.1.3.1.7
Simplify.
Tap for more steps...
Step 3.1.2.1.1.3.1.7.1
Multiply by .
Step 3.1.2.1.1.3.1.7.2
Multiply by .
Step 3.1.2.1.1.3.2
Add and .
Step 3.1.2.1.1.3.3
Subtract from .
Step 3.1.2.1.1.4
Apply the distributive property.
Step 3.1.2.1.1.5
Simplify.
Tap for more steps...
Step 3.1.2.1.1.5.1
Multiply by .
Step 3.1.2.1.1.5.2
Multiply by .
Step 3.1.2.1.1.5.3
Multiply by .
Step 3.1.2.1.1.5.4
Multiply by .
Step 3.1.2.1.1.6
Apply the distributive property.
Step 3.1.2.1.1.7
Multiply by .
Step 3.1.2.1.1.8
Multiply by .
Step 3.1.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 3.1.2.1.2.1
Combine the opposite terms in .
Tap for more steps...
Step 3.1.2.1.2.1.1
Add and .
Step 3.1.2.1.2.1.2
Add and .
Step 3.1.2.1.2.2
Subtract from .
Step 3.1.2.1.2.3
Add and .
Step 3.1.2.1.2.4
Add and .
Step 3.1.2.1.2.5
Add and .
Step 3.2
Solve for in .
Tap for more steps...
Step 3.2.1
Factor the left side of the equation.
Tap for more steps...
Step 3.2.1.1
Factor out of .
Tap for more steps...
Step 3.2.1.1.1
Factor out of .
Step 3.2.1.1.2
Factor out of .
Step 3.2.1.1.3
Factor out of .
Step 3.2.1.1.4
Factor out of .
Step 3.2.1.1.5
Factor out of .
Step 3.2.1.2
Factor using the perfect square rule.
Tap for more steps...
Step 3.2.1.2.1
Rewrite as .
Step 3.2.1.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.2.1.2.3
Rewrite the polynomial.
Step 3.2.1.2.4
Factor using the perfect square trinomial rule , where and .
Step 3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.2.1
Divide each term in by .
Step 3.2.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.1.2
Divide by .
Step 3.2.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.2.3.1
Divide by .
Step 3.2.3
Set the equal to .
Step 3.2.4
Subtract from both sides of the equation.
Step 3.3
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Simplify .
Tap for more steps...
Step 3.3.2.1.1
Simplify each term.
Tap for more steps...
Step 3.3.2.1.1.1
Raise to the power of .
Step 3.3.2.1.1.2
Multiply by .
Step 3.3.2.1.1.3
Subtract from .
Step 3.3.2.1.1.4
Add and .
Step 3.3.2.1.1.5
Rewrite as .
Step 3.3.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3.2.1.1.7
Multiply by .
Step 3.3.2.1.2
Subtract from .
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6