Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Multiply by .
Step 1.3.1.5
Add and .
Step 1.3.1.6
Factor out of .
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.1.7
Rewrite as .
Step 1.3.1.7.1
Rewrite as .
Step 1.3.1.7.2
Rewrite as .
Step 1.3.1.8
Pull terms out from under the radical.
Step 1.3.1.9
Raise to the power of .
Step 1.3.2
Multiply by .
Step 1.3.3
Simplify .
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.4.3
Multiply by .
Step 1.4.1.5
Add and .
Step 1.4.1.6
Factor out of .
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.1.7
Rewrite as .
Step 1.4.1.7.1
Rewrite as .
Step 1.4.1.7.2
Rewrite as .
Step 1.4.1.8
Pull terms out from under the radical.
Step 1.4.1.9
Raise to the power of .
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.4.4
Change the to .
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.4.3
Multiply by .
Step 1.5.1.5
Add and .
Step 1.5.1.6
Factor out of .
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.1.7
Rewrite as .
Step 1.5.1.7.1
Rewrite as .
Step 1.5.1.7.2
Rewrite as .
Step 1.5.1.8
Pull terms out from under the radical.
Step 1.5.1.9
Raise to the power of .
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Change the to .
Step 1.6
The final answer is the combination of both solutions.
Step 2
Step 2.1
Replace all occurrences of with in each equation.
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify .
Step 2.1.2.1.1
Simplify each term.
Step 2.1.2.1.1.1
Rewrite as .
Step 2.1.2.1.1.2
Expand using the FOIL Method.
Step 2.1.2.1.1.2.1
Apply the distributive property.
Step 2.1.2.1.1.2.2
Apply the distributive property.
Step 2.1.2.1.1.2.3
Apply the distributive property.
Step 2.1.2.1.1.3
Simplify and combine like terms.
Step 2.1.2.1.1.3.1
Simplify each term.
Step 2.1.2.1.1.3.1.1
Multiply by .
Step 2.1.2.1.1.3.1.2
Multiply by .
Step 2.1.2.1.1.3.1.3
Multiply by .
Step 2.1.2.1.1.3.1.4
Multiply .
Step 2.1.2.1.1.3.1.4.1
Multiply by .
Step 2.1.2.1.1.3.1.4.2
Raise to the power of .
Step 2.1.2.1.1.3.1.4.3
Raise to the power of .
Step 2.1.2.1.1.3.1.4.4
Use the power rule to combine exponents.
Step 2.1.2.1.1.3.1.4.5
Add and .
Step 2.1.2.1.1.3.1.5
Rewrite as .
Step 2.1.2.1.1.3.1.5.1
Use to rewrite as .
Step 2.1.2.1.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.3.1.5.3
Combine and .
Step 2.1.2.1.1.3.1.5.4
Cancel the common factor of .
Step 2.1.2.1.1.3.1.5.4.1
Cancel the common factor.
Step 2.1.2.1.1.3.1.5.4.2
Rewrite the expression.
Step 2.1.2.1.1.3.1.5.5
Simplify.
Step 2.1.2.1.1.3.1.6
Apply the distributive property.
Step 2.1.2.1.1.3.1.7
Simplify.
Step 2.1.2.1.1.3.1.7.1
Multiply by .
Step 2.1.2.1.1.3.1.7.2
Multiply by .
Step 2.1.2.1.1.3.2
Add and .
Step 2.1.2.1.1.3.3
Add and .
Step 2.1.2.1.1.4
Apply the distributive property.
Step 2.1.2.1.1.5
Simplify.
Step 2.1.2.1.1.5.1
Multiply by .
Step 2.1.2.1.1.5.2
Multiply by .
Step 2.1.2.1.1.5.3
Multiply by .
Step 2.1.2.1.1.5.4
Multiply by .
Step 2.1.2.1.1.6
Apply the distributive property.
Step 2.1.2.1.1.7
Multiply by .
Step 2.1.2.1.1.8
Multiply by .
Step 2.1.2.1.2
Simplify by adding terms.
Step 2.1.2.1.2.1
Combine the opposite terms in .
Step 2.1.2.1.2.1.1
Subtract from .
Step 2.1.2.1.2.1.2
Add and .
Step 2.1.2.1.2.2
Subtract from .
Step 2.1.2.1.2.3
Add and .
Step 2.1.2.1.2.4
Add and .
Step 2.1.2.1.2.5
Add and .
Step 2.2
Solve for in .
Step 2.2.1
Factor the left side of the equation.
Step 2.2.1.1
Factor out of .
Step 2.2.1.1.1
Factor out of .
Step 2.2.1.1.2
Factor out of .
Step 2.2.1.1.3
Factor out of .
Step 2.2.1.1.4
Factor out of .
Step 2.2.1.1.5
Factor out of .
Step 2.2.1.2
Factor using the perfect square rule.
Step 2.2.1.2.1
Rewrite as .
Step 2.2.1.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.2.1.2.3
Rewrite the polynomial.
Step 2.2.1.2.4
Factor using the perfect square trinomial rule , where and .
Step 2.2.2
Divide each term in by and simplify.
Step 2.2.2.1
Divide each term in by .
Step 2.2.2.2
Simplify the left side.
Step 2.2.2.2.1
Cancel the common factor of .
Step 2.2.2.2.1.1
Cancel the common factor.
Step 2.2.2.2.1.2
Divide by .
Step 2.2.2.3
Simplify the right side.
Step 2.2.2.3.1
Divide by .
Step 2.2.3
Set the equal to .
Step 2.2.4
Subtract from both sides of the equation.
Step 2.3
Replace all occurrences of with in each equation.
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify .
Step 2.3.2.1.1
Simplify each term.
Step 2.3.2.1.1.1
Raise to the power of .
Step 2.3.2.1.1.2
Multiply by .
Step 2.3.2.1.1.3
Subtract from .
Step 2.3.2.1.1.4
Add and .
Step 2.3.2.1.1.5
Rewrite as .
Step 2.3.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3.2.1.1.7
Multiply by .
Step 2.3.2.1.2
Add and .
Step 3
Step 3.1
Replace all occurrences of with in each equation.
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify .
Step 3.1.2.1.1
Simplify each term.
Step 3.1.2.1.1.1
Rewrite as .
Step 3.1.2.1.1.2
Expand using the FOIL Method.
Step 3.1.2.1.1.2.1
Apply the distributive property.
Step 3.1.2.1.1.2.2
Apply the distributive property.
Step 3.1.2.1.1.2.3
Apply the distributive property.
Step 3.1.2.1.1.3
Simplify and combine like terms.
Step 3.1.2.1.1.3.1
Simplify each term.
Step 3.1.2.1.1.3.1.1
Multiply by .
Step 3.1.2.1.1.3.1.2
Multiply by .
Step 3.1.2.1.1.3.1.3
Multiply by .
Step 3.1.2.1.1.3.1.4
Multiply .
Step 3.1.2.1.1.3.1.4.1
Multiply by .
Step 3.1.2.1.1.3.1.4.2
Raise to the power of .
Step 3.1.2.1.1.3.1.4.3
Raise to the power of .
Step 3.1.2.1.1.3.1.4.4
Use the power rule to combine exponents.
Step 3.1.2.1.1.3.1.4.5
Add and .
Step 3.1.2.1.1.3.1.5
Rewrite as .
Step 3.1.2.1.1.3.1.5.1
Use to rewrite as .
Step 3.1.2.1.1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.3.1.5.3
Combine and .
Step 3.1.2.1.1.3.1.5.4
Cancel the common factor of .
Step 3.1.2.1.1.3.1.5.4.1
Cancel the common factor.
Step 3.1.2.1.1.3.1.5.4.2
Rewrite the expression.
Step 3.1.2.1.1.3.1.5.5
Simplify.
Step 3.1.2.1.1.3.1.6
Apply the distributive property.
Step 3.1.2.1.1.3.1.7
Simplify.
Step 3.1.2.1.1.3.1.7.1
Multiply by .
Step 3.1.2.1.1.3.1.7.2
Multiply by .
Step 3.1.2.1.1.3.2
Add and .
Step 3.1.2.1.1.3.3
Subtract from .
Step 3.1.2.1.1.4
Apply the distributive property.
Step 3.1.2.1.1.5
Simplify.
Step 3.1.2.1.1.5.1
Multiply by .
Step 3.1.2.1.1.5.2
Multiply by .
Step 3.1.2.1.1.5.3
Multiply by .
Step 3.1.2.1.1.5.4
Multiply by .
Step 3.1.2.1.1.6
Apply the distributive property.
Step 3.1.2.1.1.7
Multiply by .
Step 3.1.2.1.1.8
Multiply by .
Step 3.1.2.1.2
Simplify by adding terms.
Step 3.1.2.1.2.1
Combine the opposite terms in .
Step 3.1.2.1.2.1.1
Add and .
Step 3.1.2.1.2.1.2
Add and .
Step 3.1.2.1.2.2
Subtract from .
Step 3.1.2.1.2.3
Add and .
Step 3.1.2.1.2.4
Add and .
Step 3.1.2.1.2.5
Add and .
Step 3.2
Solve for in .
Step 3.2.1
Factor the left side of the equation.
Step 3.2.1.1
Factor out of .
Step 3.2.1.1.1
Factor out of .
Step 3.2.1.1.2
Factor out of .
Step 3.2.1.1.3
Factor out of .
Step 3.2.1.1.4
Factor out of .
Step 3.2.1.1.5
Factor out of .
Step 3.2.1.2
Factor using the perfect square rule.
Step 3.2.1.2.1
Rewrite as .
Step 3.2.1.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.2.1.2.3
Rewrite the polynomial.
Step 3.2.1.2.4
Factor using the perfect square trinomial rule , where and .
Step 3.2.2
Divide each term in by and simplify.
Step 3.2.2.1
Divide each term in by .
Step 3.2.2.2
Simplify the left side.
Step 3.2.2.2.1
Cancel the common factor of .
Step 3.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.1.2
Divide by .
Step 3.2.2.3
Simplify the right side.
Step 3.2.2.3.1
Divide by .
Step 3.2.3
Set the equal to .
Step 3.2.4
Subtract from both sides of the equation.
Step 3.3
Replace all occurrences of with in each equation.
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Simplify each term.
Step 3.3.2.1.1.1
Raise to the power of .
Step 3.3.2.1.1.2
Multiply by .
Step 3.3.2.1.1.3
Subtract from .
Step 3.3.2.1.1.4
Add and .
Step 3.3.2.1.1.5
Rewrite as .
Step 3.3.2.1.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3.2.1.1.7
Multiply by .
Step 3.3.2.1.2
Subtract from .
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6