Precalculus Examples

Determine if Odd, Even, or Neither f(x)=tan(x)
f(x)=tan(x)
Step 1
Find f(-x).
Tap for more steps...
Step 1.1
Find f(-x) by substituting -x for all occurrence of x in f(x).
f(-x)=tan(-x)
Step 1.2
Since tan(-x) is an odd function, rewrite tan(-x) as -tan(x).
f(-x)=-tan(x)
f(-x)=-tan(x)
Step 2
A function is even if f(-x)=f(x).
Tap for more steps...
Step 2.1
Check if f(-x)=f(x).
Step 2.2
Since -tan(x)tan(x), the function is not even.
The function is not even
The function is not even
Step 3
A function is odd if f(-x)=-f(x).
Tap for more steps...
Step 3.1
Multiply -1 by tan(x).
-f(x)=-tan(x)
Step 3.2
Since -tan(x)=-tan(x), the function is odd.
The function is odd
The function is odd
Step 4
 [x2  12  π  xdx ]