Enter a problem...
Precalculus Examples
x2-8x-8y-16=0x2−8x−8y−16=0
Step 1
Step 1.1
Move all terms not containing yy to the right side of the equation.
Step 1.1.1
Subtract x2x2 from both sides of the equation.
-8x-8y-16=-x2−8x−8y−16=−x2
Step 1.1.2
Add 8x8x to both sides of the equation.
-8y-16=-x2+8x−8y−16=−x2+8x
Step 1.1.3
Add 1616 to both sides of the equation.
-8y=-x2+8x+16−8y=−x2+8x+16
-8y=-x2+8x+16−8y=−x2+8x+16
Step 1.2
Divide each term in -8y=-x2+8x+16−8y=−x2+8x+16 by -8−8 and simplify.
Step 1.2.1
Divide each term in -8y=-x2+8x+16−8y=−x2+8x+16 by -8−8.
-8y-8=-x2-8+8x-8+16-8−8y−8=−x2−8+8x−8+16−8
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of -8−8.
Step 1.2.2.1.1
Cancel the common factor.
-8y-8=-x2-8+8x-8+16-8
Step 1.2.2.1.2
Divide y by 1.
y=-x2-8+8x-8+16-8
y=-x2-8+8x-8+16-8
y=-x2-8+8x-8+16-8
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Dividing two negative values results in a positive value.
y=x28+8x-8+16-8
Step 1.2.3.1.2
Cancel the common factor of 8 and -8.
Step 1.2.3.1.2.1
Factor 8 out of 8x.
y=x28+8(x)-8+16-8
Step 1.2.3.1.2.2
Move the negative one from the denominator of x-1.
y=x28-1⋅x+16-8
y=x28-1⋅x+16-8
Step 1.2.3.1.3
Rewrite -1⋅x as -x.
y=x28-x+16-8
Step 1.2.3.1.4
Divide 16 by -8.
y=x28-x-2
y=x28-x-2
y=x28-x-2
y=x28-x-2
y=x28-x-2
Step 2
Step 2.1
Rewrite the equation in vertex form.
Step 2.1.1
Complete the square for x28-x-2.
Step 2.1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=18
b=-1
c=-2
Step 2.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.1.1.3
Find the value of d using the formula d=b2a.
Step 2.1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=-12(18)
Step 2.1.1.3.2
Simplify the right side.
Step 2.1.1.3.2.1
Combine 2 and 18.
d=-128
Step 2.1.1.3.2.2
Cancel the common factor of 2 and 8.
Step 2.1.1.3.2.2.1
Factor 2 out of 2.
d=-12(1)8
Step 2.1.1.3.2.2.2
Cancel the common factors.
Step 2.1.1.3.2.2.2.1
Factor 2 out of 8.
d=-12⋅12⋅4
Step 2.1.1.3.2.2.2.2
Cancel the common factor.
d=-12⋅12⋅4
Step 2.1.1.3.2.2.2.3
Rewrite the expression.
d=-114
d=-114
d=-114
Step 2.1.1.3.2.3
Multiply the numerator by the reciprocal of the denominator.
d=-1⋅4
Step 2.1.1.3.2.4
Multiply -1 by 4.
d=-4
d=-4
d=-4
Step 2.1.1.4
Find the value of e using the formula e=c-b24a.
Step 2.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-2-(-1)24(18)
Step 2.1.1.4.2
Simplify the right side.
Step 2.1.1.4.2.1
Simplify each term.
Step 2.1.1.4.2.1.1
Raise -1 to the power of 2.
e=-2-14(18)
Step 2.1.1.4.2.1.2
Combine 4 and 18.
e=-2-148
Step 2.1.1.4.2.1.3
Cancel the common factor of 4 and 8.
Step 2.1.1.4.2.1.3.1
Factor 4 out of 4.
e=-2-14(1)8
Step 2.1.1.4.2.1.3.2
Cancel the common factors.
Step 2.1.1.4.2.1.3.2.1
Factor 4 out of 8.
e=-2-14⋅14⋅2
Step 2.1.1.4.2.1.3.2.2
Cancel the common factor.
e=-2-14⋅14⋅2
Step 2.1.1.4.2.1.3.2.3
Rewrite the expression.
e=-2-112
e=-2-112
e=-2-112
Step 2.1.1.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
e=-2-(1⋅2)
Step 2.1.1.4.2.1.5
Multiply -(1⋅2).
Step 2.1.1.4.2.1.5.1
Multiply 2 by 1.
e=-2-1⋅2
Step 2.1.1.4.2.1.5.2
Multiply -1 by 2.
e=-2-2
e=-2-2
e=-2-2
Step 2.1.1.4.2.2
Subtract 2 from -2.
e=-4
e=-4
e=-4
Step 2.1.1.5
Substitute the values of a, d, and e into the vertex form 18(x-4)2-4.
18(x-4)2-4
18(x-4)2-4
Step 2.1.2
Set y equal to the new right side.
y=18⋅(x-4)2-4
y=18⋅(x-4)2-4
Step 2.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=18
h=4
k=-4
Step 2.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 2.4
Find the vertex (h,k).
(4,-4)
Step 2.5
Find p, the distance from the vertex to the focus.
Step 2.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 2.5.2
Substitute the value of a into the formula.
14⋅18
Step 2.5.3
Simplify.
Step 2.5.3.1
Combine 4 and 18.
148
Step 2.5.3.2
Cancel the common factor of 4 and 8.
Step 2.5.3.2.1
Factor 4 out of 4.
14(1)8
Step 2.5.3.2.2
Cancel the common factors.
Step 2.5.3.2.2.1
Factor 4 out of 8.
14⋅14⋅2
Step 2.5.3.2.2.2
Cancel the common factor.
14⋅14⋅2
Step 2.5.3.2.2.3
Rewrite the expression.
112
112
112
Step 2.5.3.3
Multiply the numerator by the reciprocal of the denominator.
1⋅2
Step 2.5.3.4
Multiply 2 by 1.
2
2
2
Step 2.6
Find the focus.
Step 2.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 2.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(4,-2)
(4,-2)
Step 2.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=4
Step 2.8
Find the directrix.
Step 2.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 2.8.2
Substitute the known values of p and k into the formula and simplify.
y=-6
y=-6
Step 2.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
Step 3
Step 3.1
Replace the variable x with 3 in the expression.
f(3)=(3)28-(3)-2
Step 3.2
Simplify the result.
Step 3.2.1
Find the common denominator.
Step 3.2.1.1
Write -(3) as a fraction with denominator 1.
f(3)=(3)28+-(3)1-2
Step 3.2.1.2
Multiply -(3)1 by 88.
f(3)=(3)28+-(3)1⋅88-2
Step 3.2.1.3
Multiply -(3)1 by 88.
f(3)=(3)28+-3⋅88-2
Step 3.2.1.4
Write -2 as a fraction with denominator 1.
f(3)=(3)28+-3⋅88+-21
Step 3.2.1.5
Multiply -21 by 88.
f(3)=(3)28+-3⋅88+-21⋅88
Step 3.2.1.6
Multiply -21 by 88.
f(3)=(3)28+-3⋅88+-2⋅88
f(3)=(3)28+-3⋅88+-2⋅88
Step 3.2.2
Combine the numerators over the common denominator.
f(3)=(3)2-3⋅8-2⋅88
Step 3.2.3
Simplify each term.
Step 3.2.3.1
Raise 3 to the power of 2.
f(3)=9-3⋅8-2⋅88
Step 3.2.3.2
Multiply -(3)⋅8.
Step 3.2.3.2.1
Multiply -1 by 3.
f(3)=9-3⋅8-2⋅88
Step 3.2.3.2.2
Multiply -3 by 8.
f(3)=9-24-2⋅88
f(3)=9-24-2⋅88
Step 3.2.3.3
Multiply -2 by 8.
f(3)=9-24-168
f(3)=9-24-168
Step 3.2.4
Simplify the expression.
Step 3.2.4.1
Subtract 24 from 9.
f(3)=-15-168
Step 3.2.4.2
Subtract 16 from -15.
f(3)=-318
Step 3.2.4.3
Move the negative in front of the fraction.
f(3)=-318
f(3)=-318
Step 3.2.5
The final answer is -318.
-318
-318
Step 3.3
The y value at x=3 is -318.
y=-318
Step 3.4
Replace the variable x with 2 in the expression.
f(2)=(2)28-(2)-2
Step 3.5
Simplify the result.
Step 3.5.1
Find the common denominator.
Step 3.5.1.1
Write -(2) as a fraction with denominator 1.
f(2)=(2)28+-(2)1-2
Step 3.5.1.2
Multiply -(2)1 by 88.
f(2)=(2)28+-(2)1⋅88-2
Step 3.5.1.3
Multiply -(2)1 by 88.
f(2)=(2)28+-2⋅88-2
Step 3.5.1.4
Write -2 as a fraction with denominator 1.
f(2)=(2)28+-2⋅88+-21
Step 3.5.1.5
Multiply -21 by 88.
f(2)=(2)28+-2⋅88+-21⋅88
Step 3.5.1.6
Multiply -21 by 88.
f(2)=(2)28+-2⋅88+-2⋅88
f(2)=(2)28+-2⋅88+-2⋅88
Step 3.5.2
Combine the numerators over the common denominator.
f(2)=(2)2-2⋅8-2⋅88
Step 3.5.3
Simplify each term.
Step 3.5.3.1
Raise 2 to the power of 2.
f(2)=4-2⋅8-2⋅88
Step 3.5.3.2
Multiply -(2)⋅8.
Step 3.5.3.2.1
Multiply -1 by 2.
f(2)=4-2⋅8-2⋅88
Step 3.5.3.2.2
Multiply -2 by 8.
f(2)=4-16-2⋅88
f(2)=4-16-2⋅88
Step 3.5.3.3
Multiply -2 by 8.
f(2)=4-16-168
f(2)=4-16-168
Step 3.5.4
Reduce the expression by cancelling the common factors.
Step 3.5.4.1
Subtract 16 from 4.
f(2)=-12-168
Step 3.5.4.2
Subtract 16 from -12.
f(2)=-288
Step 3.5.4.3
Cancel the common factor of -28 and 8.
Step 3.5.4.3.1
Factor 4 out of -28.
f(2)=4(-7)8
Step 3.5.4.3.2
Cancel the common factors.
Step 3.5.4.3.2.1
Factor 4 out of 8.
f(2)=4⋅-74⋅2
Step 3.5.4.3.2.2
Cancel the common factor.
f(2)=4⋅-74⋅2
Step 3.5.4.3.2.3
Rewrite the expression.
f(2)=-72
f(2)=-72
f(2)=-72
Step 3.5.4.4
Move the negative in front of the fraction.
f(2)=-72
f(2)=-72
Step 3.5.5
The final answer is -72.
-72
-72
Step 3.6
The y value at x=2 is -72.
y=-72
Step 3.7
Replace the variable x with 5 in the expression.
f(5)=(5)28-(5)-2
Step 3.8
Simplify the result.
Step 3.8.1
Find the common denominator.
Step 3.8.1.1
Write -(5) as a fraction with denominator 1.
f(5)=(5)28+-(5)1-2
Step 3.8.1.2
Multiply -(5)1 by 88.
f(5)=(5)28+-(5)1⋅88-2
Step 3.8.1.3
Multiply -(5)1 by 88.
f(5)=(5)28+-5⋅88-2
Step 3.8.1.4
Write -2 as a fraction with denominator 1.
f(5)=(5)28+-5⋅88+-21
Step 3.8.1.5
Multiply -21 by 88.
f(5)=(5)28+-5⋅88+-21⋅88
Step 3.8.1.6
Multiply -21 by 88.
f(5)=(5)28+-5⋅88+-2⋅88
f(5)=(5)28+-5⋅88+-2⋅88
Step 3.8.2
Combine the numerators over the common denominator.
f(5)=(5)2-5⋅8-2⋅88
Step 3.8.3
Simplify each term.
Step 3.8.3.1
Raise 5 to the power of 2.
f(5)=25-5⋅8-2⋅88
Step 3.8.3.2
Multiply -(5)⋅8.
Step 3.8.3.2.1
Multiply -1 by 5.
f(5)=25-5⋅8-2⋅88
Step 3.8.3.2.2
Multiply -5 by 8.
f(5)=25-40-2⋅88
f(5)=25-40-2⋅88
Step 3.8.3.3
Multiply -2 by 8.
f(5)=25-40-168
f(5)=25-40-168
Step 3.8.4
Simplify the expression.
Step 3.8.4.1
Subtract 40 from 25.
f(5)=-15-168
Step 3.8.4.2
Subtract 16 from -15.
f(5)=-318
Step 3.8.4.3
Move the negative in front of the fraction.
f(5)=-318
f(5)=-318
Step 3.8.5
The final answer is -318.
-318
-318
Step 3.9
The y value at x=5 is -318.
y=-318
Step 3.10
Replace the variable x with 6 in the expression.
f(6)=(6)28-(6)-2
Step 3.11
Simplify the result.
Step 3.11.1
Find the common denominator.
Step 3.11.1.1
Write -(6) as a fraction with denominator 1.
f(6)=(6)28+-(6)1-2
Step 3.11.1.2
Multiply -(6)1 by 88.
f(6)=(6)28+-(6)1⋅88-2
Step 3.11.1.3
Multiply -(6)1 by 88.
f(6)=(6)28+-6⋅88-2
Step 3.11.1.4
Write -2 as a fraction with denominator 1.
f(6)=(6)28+-6⋅88+-21
Step 3.11.1.5
Multiply -21 by 88.
f(6)=(6)28+-6⋅88+-21⋅88
Step 3.11.1.6
Multiply -21 by 88.
f(6)=(6)28+-6⋅88+-2⋅88
f(6)=(6)28+-6⋅88+-2⋅88
Step 3.11.2
Combine the numerators over the common denominator.
f(6)=(6)2-6⋅8-2⋅88
Step 3.11.3
Simplify each term.
Step 3.11.3.1
Raise 6 to the power of 2.
f(6)=36-6⋅8-2⋅88
Step 3.11.3.2
Multiply -(6)⋅8.
Step 3.11.3.2.1
Multiply -1 by 6.
f(6)=36-6⋅8-2⋅88
Step 3.11.3.2.2
Multiply -6 by 8.
f(6)=36-48-2⋅88
f(6)=36-48-2⋅88
Step 3.11.3.3
Multiply -2 by 8.
f(6)=36-48-168
f(6)=36-48-168
Step 3.11.4
Reduce the expression by cancelling the common factors.
Step 3.11.4.1
Subtract 48 from 36.
f(6)=-12-168
Step 3.11.4.2
Subtract 16 from -12.
f(6)=-288
Step 3.11.4.3
Cancel the common factor of -28 and 8.
Step 3.11.4.3.1
Factor 4 out of -28.
f(6)=4(-7)8
Step 3.11.4.3.2
Cancel the common factors.
Step 3.11.4.3.2.1
Factor 4 out of 8.
f(6)=4⋅-74⋅2
Step 3.11.4.3.2.2
Cancel the common factor.
f(6)=4⋅-74⋅2
Step 3.11.4.3.2.3
Rewrite the expression.
f(6)=-72
f(6)=-72
f(6)=-72
Step 3.11.4.4
Move the negative in front of the fraction.
f(6)=-72
f(6)=-72
Step 3.11.5
The final answer is -72.
-72
-72
Step 3.12
The y value at x=6 is -72.
y=-72
Step 3.13
Graph the parabola using its properties and the selected points.
xy2-723-3184-45-3186-72
xy2-723-3184-45-3186-72
Step 4
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
xy2-723-3184-45-3186-72
Step 5