Precalculus Examples

Graph x^2-8x-8y-16=0
x2-8x-8y-16=0x28x8y16=0
Step 1
Solve for yy.
Tap for more steps...
Step 1.1
Move all terms not containing yy to the right side of the equation.
Tap for more steps...
Step 1.1.1
Subtract x2x2 from both sides of the equation.
-8x-8y-16=-x28x8y16=x2
Step 1.1.2
Add 8x8x to both sides of the equation.
-8y-16=-x2+8x8y16=x2+8x
Step 1.1.3
Add 1616 to both sides of the equation.
-8y=-x2+8x+168y=x2+8x+16
-8y=-x2+8x+168y=x2+8x+16
Step 1.2
Divide each term in -8y=-x2+8x+168y=x2+8x+16 by -88 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in -8y=-x2+8x+168y=x2+8x+16 by -88.
-8y-8=-x2-8+8x-8+16-88y8=x28+8x8+168
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of -88.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
-8y-8=-x2-8+8x-8+16-8
Step 1.2.2.1.2
Divide y by 1.
y=-x2-8+8x-8+16-8
y=-x2-8+8x-8+16-8
y=-x2-8+8x-8+16-8
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Dividing two negative values results in a positive value.
y=x28+8x-8+16-8
Step 1.2.3.1.2
Cancel the common factor of 8 and -8.
Tap for more steps...
Step 1.2.3.1.2.1
Factor 8 out of 8x.
y=x28+8(x)-8+16-8
Step 1.2.3.1.2.2
Move the negative one from the denominator of x-1.
y=x28-1x+16-8
y=x28-1x+16-8
Step 1.2.3.1.3
Rewrite -1x as -x.
y=x28-x+16-8
Step 1.2.3.1.4
Divide 16 by -8.
y=x28-x-2
y=x28-x-2
y=x28-x-2
y=x28-x-2
y=x28-x-2
Step 2
Find the properties of the given parabola.
Tap for more steps...
Step 2.1
Rewrite the equation in vertex form.
Tap for more steps...
Step 2.1.1
Complete the square for x28-x-2.
Tap for more steps...
Step 2.1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=18
b=-1
c=-2
Step 2.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.1.1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 2.1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=-12(18)
Step 2.1.1.3.2
Simplify the right side.
Tap for more steps...
Step 2.1.1.3.2.1
Combine 2 and 18.
d=-128
Step 2.1.1.3.2.2
Cancel the common factor of 2 and 8.
Tap for more steps...
Step 2.1.1.3.2.2.1
Factor 2 out of 2.
d=-12(1)8
Step 2.1.1.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 2.1.1.3.2.2.2.1
Factor 2 out of 8.
d=-12124
Step 2.1.1.3.2.2.2.2
Cancel the common factor.
d=-12124
Step 2.1.1.3.2.2.2.3
Rewrite the expression.
d=-114
d=-114
d=-114
Step 2.1.1.3.2.3
Multiply the numerator by the reciprocal of the denominator.
d=-14
Step 2.1.1.3.2.4
Multiply -1 by 4.
d=-4
d=-4
d=-4
Step 2.1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-2-(-1)24(18)
Step 2.1.1.4.2
Simplify the right side.
Tap for more steps...
Step 2.1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 2.1.1.4.2.1.1
Raise -1 to the power of 2.
e=-2-14(18)
Step 2.1.1.4.2.1.2
Combine 4 and 18.
e=-2-148
Step 2.1.1.4.2.1.3
Cancel the common factor of 4 and 8.
Tap for more steps...
Step 2.1.1.4.2.1.3.1
Factor 4 out of 4.
e=-2-14(1)8
Step 2.1.1.4.2.1.3.2
Cancel the common factors.
Tap for more steps...
Step 2.1.1.4.2.1.3.2.1
Factor 4 out of 8.
e=-2-14142
Step 2.1.1.4.2.1.3.2.2
Cancel the common factor.
e=-2-14142
Step 2.1.1.4.2.1.3.2.3
Rewrite the expression.
e=-2-112
e=-2-112
e=-2-112
Step 2.1.1.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
e=-2-(12)
Step 2.1.1.4.2.1.5
Multiply -(12).
Tap for more steps...
Step 2.1.1.4.2.1.5.1
Multiply 2 by 1.
e=-2-12
Step 2.1.1.4.2.1.5.2
Multiply -1 by 2.
e=-2-2
e=-2-2
e=-2-2
Step 2.1.1.4.2.2
Subtract 2 from -2.
e=-4
e=-4
e=-4
Step 2.1.1.5
Substitute the values of a, d, and e into the vertex form 18(x-4)2-4.
18(x-4)2-4
18(x-4)2-4
Step 2.1.2
Set y equal to the new right side.
y=18(x-4)2-4
y=18(x-4)2-4
Step 2.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=18
h=4
k=-4
Step 2.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 2.4
Find the vertex (h,k).
(4,-4)
Step 2.5
Find p, the distance from the vertex to the focus.
Tap for more steps...
Step 2.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 2.5.2
Substitute the value of a into the formula.
1418
Step 2.5.3
Simplify.
Tap for more steps...
Step 2.5.3.1
Combine 4 and 18.
148
Step 2.5.3.2
Cancel the common factor of 4 and 8.
Tap for more steps...
Step 2.5.3.2.1
Factor 4 out of 4.
14(1)8
Step 2.5.3.2.2
Cancel the common factors.
Tap for more steps...
Step 2.5.3.2.2.1
Factor 4 out of 8.
14142
Step 2.5.3.2.2.2
Cancel the common factor.
14142
Step 2.5.3.2.2.3
Rewrite the expression.
112
112
112
Step 2.5.3.3
Multiply the numerator by the reciprocal of the denominator.
12
Step 2.5.3.4
Multiply 2 by 1.
2
2
2
Step 2.6
Find the focus.
Tap for more steps...
Step 2.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 2.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(4,-2)
(4,-2)
Step 2.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=4
Step 2.8
Find the directrix.
Tap for more steps...
Step 2.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 2.8.2
Substitute the known values of p and k into the formula and simplify.
y=-6
y=-6
Step 2.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
Step 3
Select a few x values, and plug them into the equation to find the corresponding y values. The x values should be selected around the vertex.
Tap for more steps...
Step 3.1
Replace the variable x with 3 in the expression.
f(3)=(3)28-(3)-2
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Find the common denominator.
Tap for more steps...
Step 3.2.1.1
Write -(3) as a fraction with denominator 1.
f(3)=(3)28+-(3)1-2
Step 3.2.1.2
Multiply -(3)1 by 88.
f(3)=(3)28+-(3)188-2
Step 3.2.1.3
Multiply -(3)1 by 88.
f(3)=(3)28+-388-2
Step 3.2.1.4
Write -2 as a fraction with denominator 1.
f(3)=(3)28+-388+-21
Step 3.2.1.5
Multiply -21 by 88.
f(3)=(3)28+-388+-2188
Step 3.2.1.6
Multiply -21 by 88.
f(3)=(3)28+-388+-288
f(3)=(3)28+-388+-288
Step 3.2.2
Combine the numerators over the common denominator.
f(3)=(3)2-38-288
Step 3.2.3
Simplify each term.
Tap for more steps...
Step 3.2.3.1
Raise 3 to the power of 2.
f(3)=9-38-288
Step 3.2.3.2
Multiply -(3)8.
Tap for more steps...
Step 3.2.3.2.1
Multiply -1 by 3.
f(3)=9-38-288
Step 3.2.3.2.2
Multiply -3 by 8.
f(3)=9-24-288
f(3)=9-24-288
Step 3.2.3.3
Multiply -2 by 8.
f(3)=9-24-168
f(3)=9-24-168
Step 3.2.4
Simplify the expression.
Tap for more steps...
Step 3.2.4.1
Subtract 24 from 9.
f(3)=-15-168
Step 3.2.4.2
Subtract 16 from -15.
f(3)=-318
Step 3.2.4.3
Move the negative in front of the fraction.
f(3)=-318
f(3)=-318
Step 3.2.5
The final answer is -318.
-318
-318
Step 3.3
The y value at x=3 is -318.
y=-318
Step 3.4
Replace the variable x with 2 in the expression.
f(2)=(2)28-(2)-2
Step 3.5
Simplify the result.
Tap for more steps...
Step 3.5.1
Find the common denominator.
Tap for more steps...
Step 3.5.1.1
Write -(2) as a fraction with denominator 1.
f(2)=(2)28+-(2)1-2
Step 3.5.1.2
Multiply -(2)1 by 88.
f(2)=(2)28+-(2)188-2
Step 3.5.1.3
Multiply -(2)1 by 88.
f(2)=(2)28+-288-2
Step 3.5.1.4
Write -2 as a fraction with denominator 1.
f(2)=(2)28+-288+-21
Step 3.5.1.5
Multiply -21 by 88.
f(2)=(2)28+-288+-2188
Step 3.5.1.6
Multiply -21 by 88.
f(2)=(2)28+-288+-288
f(2)=(2)28+-288+-288
Step 3.5.2
Combine the numerators over the common denominator.
f(2)=(2)2-28-288
Step 3.5.3
Simplify each term.
Tap for more steps...
Step 3.5.3.1
Raise 2 to the power of 2.
f(2)=4-28-288
Step 3.5.3.2
Multiply -(2)8.
Tap for more steps...
Step 3.5.3.2.1
Multiply -1 by 2.
f(2)=4-28-288
Step 3.5.3.2.2
Multiply -2 by 8.
f(2)=4-16-288
f(2)=4-16-288
Step 3.5.3.3
Multiply -2 by 8.
f(2)=4-16-168
f(2)=4-16-168
Step 3.5.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.5.4.1
Subtract 16 from 4.
f(2)=-12-168
Step 3.5.4.2
Subtract 16 from -12.
f(2)=-288
Step 3.5.4.3
Cancel the common factor of -28 and 8.
Tap for more steps...
Step 3.5.4.3.1
Factor 4 out of -28.
f(2)=4(-7)8
Step 3.5.4.3.2
Cancel the common factors.
Tap for more steps...
Step 3.5.4.3.2.1
Factor 4 out of 8.
f(2)=4-742
Step 3.5.4.3.2.2
Cancel the common factor.
f(2)=4-742
Step 3.5.4.3.2.3
Rewrite the expression.
f(2)=-72
f(2)=-72
f(2)=-72
Step 3.5.4.4
Move the negative in front of the fraction.
f(2)=-72
f(2)=-72
Step 3.5.5
The final answer is -72.
-72
-72
Step 3.6
The y value at x=2 is -72.
y=-72
Step 3.7
Replace the variable x with 5 in the expression.
f(5)=(5)28-(5)-2
Step 3.8
Simplify the result.
Tap for more steps...
Step 3.8.1
Find the common denominator.
Tap for more steps...
Step 3.8.1.1
Write -(5) as a fraction with denominator 1.
f(5)=(5)28+-(5)1-2
Step 3.8.1.2
Multiply -(5)1 by 88.
f(5)=(5)28+-(5)188-2
Step 3.8.1.3
Multiply -(5)1 by 88.
f(5)=(5)28+-588-2
Step 3.8.1.4
Write -2 as a fraction with denominator 1.
f(5)=(5)28+-588+-21
Step 3.8.1.5
Multiply -21 by 88.
f(5)=(5)28+-588+-2188
Step 3.8.1.6
Multiply -21 by 88.
f(5)=(5)28+-588+-288
f(5)=(5)28+-588+-288
Step 3.8.2
Combine the numerators over the common denominator.
f(5)=(5)2-58-288
Step 3.8.3
Simplify each term.
Tap for more steps...
Step 3.8.3.1
Raise 5 to the power of 2.
f(5)=25-58-288
Step 3.8.3.2
Multiply -(5)8.
Tap for more steps...
Step 3.8.3.2.1
Multiply -1 by 5.
f(5)=25-58-288
Step 3.8.3.2.2
Multiply -5 by 8.
f(5)=25-40-288
f(5)=25-40-288
Step 3.8.3.3
Multiply -2 by 8.
f(5)=25-40-168
f(5)=25-40-168
Step 3.8.4
Simplify the expression.
Tap for more steps...
Step 3.8.4.1
Subtract 40 from 25.
f(5)=-15-168
Step 3.8.4.2
Subtract 16 from -15.
f(5)=-318
Step 3.8.4.3
Move the negative in front of the fraction.
f(5)=-318
f(5)=-318
Step 3.8.5
The final answer is -318.
-318
-318
Step 3.9
The y value at x=5 is -318.
y=-318
Step 3.10
Replace the variable x with 6 in the expression.
f(6)=(6)28-(6)-2
Step 3.11
Simplify the result.
Tap for more steps...
Step 3.11.1
Find the common denominator.
Tap for more steps...
Step 3.11.1.1
Write -(6) as a fraction with denominator 1.
f(6)=(6)28+-(6)1-2
Step 3.11.1.2
Multiply -(6)1 by 88.
f(6)=(6)28+-(6)188-2
Step 3.11.1.3
Multiply -(6)1 by 88.
f(6)=(6)28+-688-2
Step 3.11.1.4
Write -2 as a fraction with denominator 1.
f(6)=(6)28+-688+-21
Step 3.11.1.5
Multiply -21 by 88.
f(6)=(6)28+-688+-2188
Step 3.11.1.6
Multiply -21 by 88.
f(6)=(6)28+-688+-288
f(6)=(6)28+-688+-288
Step 3.11.2
Combine the numerators over the common denominator.
f(6)=(6)2-68-288
Step 3.11.3
Simplify each term.
Tap for more steps...
Step 3.11.3.1
Raise 6 to the power of 2.
f(6)=36-68-288
Step 3.11.3.2
Multiply -(6)8.
Tap for more steps...
Step 3.11.3.2.1
Multiply -1 by 6.
f(6)=36-68-288
Step 3.11.3.2.2
Multiply -6 by 8.
f(6)=36-48-288
f(6)=36-48-288
Step 3.11.3.3
Multiply -2 by 8.
f(6)=36-48-168
f(6)=36-48-168
Step 3.11.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.11.4.1
Subtract 48 from 36.
f(6)=-12-168
Step 3.11.4.2
Subtract 16 from -12.
f(6)=-288
Step 3.11.4.3
Cancel the common factor of -28 and 8.
Tap for more steps...
Step 3.11.4.3.1
Factor 4 out of -28.
f(6)=4(-7)8
Step 3.11.4.3.2
Cancel the common factors.
Tap for more steps...
Step 3.11.4.3.2.1
Factor 4 out of 8.
f(6)=4-742
Step 3.11.4.3.2.2
Cancel the common factor.
f(6)=4-742
Step 3.11.4.3.2.3
Rewrite the expression.
f(6)=-72
f(6)=-72
f(6)=-72
Step 3.11.4.4
Move the negative in front of the fraction.
f(6)=-72
f(6)=-72
Step 3.11.5
The final answer is -72.
-72
-72
Step 3.12
The y value at x=6 is -72.
y=-72
Step 3.13
Graph the parabola using its properties and the selected points.
xy2-723-3184-45-3186-72
xy2-723-3184-45-3186-72
Step 4
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (4,-4)
Focus: (4,-2)
Axis of Symmetry: x=4
Directrix: y=-6
xy2-723-3184-45-3186-72
Step 5
 [x2  12  π  xdx ]