Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Cancel the common factor of and .
Step 1.2.3.1.1
Factor out of .
Step 1.2.3.1.2
Cancel the common factors.
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factor.
Step 1.2.3.1.2.3
Rewrite the expression.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Use the power rule to distribute the exponent.
Step 2.2.1.1.1.1
Apply the product rule to .
Step 2.2.1.1.1.2
Apply the product rule to .
Step 2.2.1.1.2
Raise to the power of .
Step 2.2.1.1.3
Raise to the power of .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Simplify terms.
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Combine the numerators over the common denominator.
Step 2.2.1.4
Simplify the numerator.
Step 2.2.1.4.1
Move to the left of .
Step 2.2.1.4.2
Add and .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine.
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.1.3
Cancel the common factor of .
Step 3.2.1.1.3.1
Cancel the common factor.
Step 3.2.1.1.3.2
Divide by .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Cancel the common factor of .
Step 3.2.2.1.1.1
Factor out of .
Step 3.2.2.1.1.2
Cancel the common factor.
Step 3.2.2.1.1.3
Rewrite the expression.
Step 3.2.2.1.2
Multiply by .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Rewrite as .
Step 3.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.5.1
First, use the positive value of the to find the first solution.
Step 3.5.2
Next, use the negative value of the to find the second solution.
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Cancel the common factor of and .
Step 4.2.1.1.1
Factor out of .
Step 4.2.1.1.2
Cancel the common factors.
Step 4.2.1.1.2.1
Factor out of .
Step 4.2.1.1.2.2
Cancel the common factor.
Step 4.2.1.1.2.3
Rewrite the expression.
Step 4.2.1.1.2.4
Divide by .
Step 4.2.1.2
Multiply by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Cancel the common factor of and .
Step 5.2.1.1.1
Factor out of .
Step 5.2.1.1.2
Cancel the common factors.
Step 5.2.1.1.2.1
Factor out of .
Step 5.2.1.1.2.2
Cancel the common factor.
Step 5.2.1.1.2.3
Rewrite the expression.
Step 5.2.1.1.2.4
Divide by .
Step 5.2.1.2
Multiply by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8