Enter a problem...
Precalculus Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of .
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply .
Step 2.2.1.1.3.1.1.1
Multiply by .
Step 2.2.1.1.3.1.1.2
Multiply by .
Step 2.2.1.1.3.1.1.3
Multiply by .
Step 2.2.1.1.3.1.2
Multiply .
Step 2.2.1.1.3.1.2.1
Multiply by .
Step 2.2.1.1.3.1.2.2
Multiply by .
Step 2.2.1.1.3.1.2.3
Multiply by .
Step 2.2.1.1.3.1.3
Multiply .
Step 2.2.1.1.3.1.3.1
Multiply by .
Step 2.2.1.1.3.1.3.2
Multiply by .
Step 2.2.1.1.3.1.3.3
Multiply by .
Step 2.2.1.1.3.1.4
Multiply .
Step 2.2.1.1.3.1.4.1
Multiply by .
Step 2.2.1.1.3.1.4.2
Multiply by .
Step 2.2.1.1.3.1.4.3
Multiply by .
Step 2.2.1.1.3.1.4.4
Multiply by .
Step 2.2.1.1.3.1.4.5
Raise to the power of .
Step 2.2.1.1.3.1.4.6
Raise to the power of .
Step 2.2.1.1.3.1.4.7
Use the power rule to combine exponents.
Step 2.2.1.1.3.1.4.8
Add and .
Step 2.2.1.1.3.1.4.9
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Simplify each term.
Step 2.2.1.1.4.1
Cancel the common factor of .
Step 2.2.1.1.4.1.1
Factor out of .
Step 2.2.1.1.4.1.2
Factor out of .
Step 2.2.1.1.4.1.3
Cancel the common factor.
Step 2.2.1.1.4.1.4
Rewrite the expression.
Step 2.2.1.1.4.2
Rewrite as .
Step 2.2.1.1.5
Apply the distributive property.
Step 2.2.1.1.6
Simplify.
Step 2.2.1.1.6.1
Cancel the common factor of .
Step 2.2.1.1.6.1.1
Cancel the common factor.
Step 2.2.1.1.6.1.2
Rewrite the expression.
Step 2.2.1.1.6.2
Cancel the common factor of .
Step 2.2.1.1.6.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.6.2.2
Factor out of .
Step 2.2.1.1.6.2.3
Cancel the common factor.
Step 2.2.1.1.6.2.4
Rewrite the expression.
Step 2.2.1.1.6.3
Multiply by .
Step 2.2.1.1.6.4
Cancel the common factor of .
Step 2.2.1.1.6.4.1
Cancel the common factor.
Step 2.2.1.1.6.4.2
Rewrite the expression.
Step 2.2.1.1.7
Apply the distributive property.
Step 2.2.1.1.8
Multiply .
Step 2.2.1.1.8.1
Combine and .
Step 2.2.1.1.8.2
Multiply by .
Step 2.2.1.1.9
Multiply .
Step 2.2.1.1.9.1
Multiply by .
Step 2.2.1.1.9.2
Combine and .
Step 2.2.1.1.9.3
Multiply by .
Step 2.2.1.1.10
Move the negative in front of the fraction.
Step 2.2.1.1.11
Apply the distributive property.
Step 2.2.1.1.12
Combine and .
Step 2.2.1.1.13
Multiply .
Step 2.2.1.1.13.1
Combine and .
Step 2.2.1.1.13.2
Raise to the power of .
Step 2.2.1.1.13.3
Raise to the power of .
Step 2.2.1.1.13.4
Use the power rule to combine exponents.
Step 2.2.1.1.13.5
Add and .
Step 2.2.1.1.14
Move to the left of .
Step 2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.3
Combine and .
Step 2.2.1.4
Combine the numerators over the common denominator.
Step 2.2.1.5
Combine the numerators over the common denominator.
Step 2.2.1.6
Multiply by .
Step 2.2.1.7
Subtract from .
Step 2.2.1.8
Factor out of .
Step 2.2.1.8.1
Factor out of .
Step 2.2.1.8.2
Factor out of .
Step 2.2.1.8.3
Factor out of .
Step 2.2.1.9
To write as a fraction with a common denominator, multiply by .
Step 2.2.1.10
Simplify terms.
Step 2.2.1.10.1
Combine and .
Step 2.2.1.10.2
Combine the numerators over the common denominator.
Step 2.2.1.10.3
Multiply by .
Step 2.2.1.11
Simplify the numerator.
Step 2.2.1.11.1
Apply the distributive property.
Step 2.2.1.11.2
Multiply by .
Step 2.2.1.11.3
Rewrite using the commutative property of multiplication.
Step 2.2.1.11.4
Simplify each term.
Step 2.2.1.11.4.1
Multiply by by adding the exponents.
Step 2.2.1.11.4.1.1
Move .
Step 2.2.1.11.4.1.2
Multiply by .
Step 2.2.1.11.4.2
Multiply by .
Step 2.2.1.12
Find the common denominator.
Step 2.2.1.12.1
Write as a fraction with denominator .
Step 2.2.1.12.2
Multiply by .
Step 2.2.1.12.3
Multiply by .
Step 2.2.1.12.4
Write as a fraction with denominator .
Step 2.2.1.12.5
Multiply by .
Step 2.2.1.12.6
Multiply by .
Step 2.2.1.13
Simplify terms.
Step 2.2.1.13.1
Combine the numerators over the common denominator.
Step 2.2.1.13.2
Simplify each term.
Step 2.2.1.13.2.1
Multiply by .
Step 2.2.1.13.2.2
Multiply by .
Step 2.2.1.13.3
Simplify by adding terms.
Step 2.2.1.13.3.1
Add and .
Step 2.2.1.13.3.2
Add and .
Step 2.2.1.14
Simplify the numerator.
Step 2.2.1.14.1
Factor out of .
Step 2.2.1.14.1.1
Factor out of .
Step 2.2.1.14.1.2
Factor out of .
Step 2.2.1.14.1.3
Factor out of .
Step 2.2.1.14.1.4
Factor out of .
Step 2.2.1.14.1.5
Factor out of .
Step 2.2.1.14.2
Reorder terms.
Step 3
Step 3.1
Multiply both sides by .
Step 3.2
Simplify.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Cancel the common factor of .
Step 3.2.1.1.1.1
Cancel the common factor.
Step 3.2.1.1.1.2
Rewrite the expression.
Step 3.2.1.1.2
Apply the distributive property.
Step 3.2.1.1.3
Simplify.
Step 3.2.1.1.3.1
Multiply by .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.1.1.3.3
Multiply by .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Multiply by .
Step 3.3
Solve for .
Step 3.3.1
Subtract from both sides of the equation.
Step 3.3.2
Subtract from .
Step 3.3.3
Factor the left side of the equation.
Step 3.3.3.1
Factor out of .
Step 3.3.3.1.1
Factor out of .
Step 3.3.3.1.2
Factor out of .
Step 3.3.3.1.3
Factor out of .
Step 3.3.3.1.4
Factor out of .
Step 3.3.3.1.5
Factor out of .
Step 3.3.3.2
Factor.
Step 3.3.3.2.1
Factor by grouping.
Step 3.3.3.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.3.3.2.1.1.1
Factor out of .
Step 3.3.3.2.1.1.2
Rewrite as plus
Step 3.3.3.2.1.1.3
Apply the distributive property.
Step 3.3.3.2.1.2
Factor out the greatest common factor from each group.
Step 3.3.3.2.1.2.1
Group the first two terms and the last two terms.
Step 3.3.3.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.3.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3.3.2.2
Remove unnecessary parentheses.
Step 3.3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3.5
Set equal to and solve for .
Step 3.3.5.1
Set equal to .
Step 3.3.5.2
Solve for .
Step 3.3.5.2.1
Add to both sides of the equation.
Step 3.3.5.2.2
Divide each term in by and simplify.
Step 3.3.5.2.2.1
Divide each term in by .
Step 3.3.5.2.2.2
Simplify the left side.
Step 3.3.5.2.2.2.1
Cancel the common factor of .
Step 3.3.5.2.2.2.1.1
Cancel the common factor.
Step 3.3.5.2.2.2.1.2
Divide by .
Step 3.3.6
Set equal to and solve for .
Step 3.3.6.1
Set equal to .
Step 3.3.6.2
Solve for .
Step 3.3.6.2.1
Add to both sides of the equation.
Step 3.3.6.2.2
Divide each term in by and simplify.
Step 3.3.6.2.2.1
Divide each term in by .
Step 3.3.6.2.2.2
Simplify the left side.
Step 3.3.6.2.2.2.1
Cancel the common factor of .
Step 3.3.6.2.2.2.1.1
Cancel the common factor.
Step 3.3.6.2.2.2.1.2
Divide by .
Step 3.3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine the numerators over the common denominator.
Step 4.2.1.2
Cancel the common factor of .
Step 4.2.1.2.1
Factor out of .
Step 4.2.1.2.2
Cancel the common factor.
Step 4.2.1.2.3
Rewrite the expression.
Step 4.2.1.3
Simplify the expression.
Step 4.2.1.3.1
Subtract from .
Step 4.2.1.3.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Combine the numerators over the common denominator.
Step 5.2.1.2
Simplify each term.
Step 5.2.1.2.1
Cancel the common factor of .
Step 5.2.1.2.1.1
Factor out of .
Step 5.2.1.2.1.2
Cancel the common factor.
Step 5.2.1.2.1.3
Rewrite the expression.
Step 5.2.1.2.2
Multiply by .
Step 5.2.1.3
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8