Enter a problem...
Precalculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Solve for .
Step 3.2.1
Add to both sides of the equation.
Step 3.2.2
Multiply both sides of the equation by .
Step 3.2.3
Simplify both sides of the equation.
Step 3.2.3.1
Simplify the left side.
Step 3.2.3.1.1
Cancel the common factor of .
Step 3.2.3.1.1.1
Cancel the common factor.
Step 3.2.3.1.1.2
Rewrite the expression.
Step 3.2.3.2
Simplify the right side.
Step 3.2.3.2.1
Simplify .
Step 3.2.3.2.1.1
Apply the distributive property.
Step 3.2.3.2.1.2
Multiply by .
Step 3.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Multiply the exponents in .
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Rewrite as .
Step 3.4.3.1.2
Expand using the FOIL Method.
Step 3.4.3.1.2.1
Apply the distributive property.
Step 3.4.3.1.2.2
Apply the distributive property.
Step 3.4.3.1.2.3
Apply the distributive property.
Step 3.4.3.1.3
Simplify and combine like terms.
Step 3.4.3.1.3.1
Simplify each term.
Step 3.4.3.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.4.3.1.3.1.2
Multiply by by adding the exponents.
Step 3.4.3.1.3.1.2.1
Move .
Step 3.4.3.1.3.1.2.2
Multiply by .
Step 3.4.3.1.3.1.3
Multiply by .
Step 3.4.3.1.3.1.4
Multiply by .
Step 3.4.3.1.3.1.5
Multiply by .
Step 3.4.3.1.3.1.6
Multiply by .
Step 3.4.3.1.3.2
Add and .
Step 3.5
Divide each term in by and simplify.
Step 3.5.1
Divide each term in by .
Step 3.5.2
Simplify the left side.
Step 3.5.2.1
Dividing two negative values results in a positive value.
Step 3.5.2.2
Divide by .
Step 3.5.3
Simplify the right side.
Step 3.5.3.1
Simplify each term.
Step 3.5.3.1.1
Move the negative one from the denominator of .
Step 3.5.3.1.2
Rewrite as .
Step 3.5.3.1.3
Multiply by .
Step 3.5.3.1.4
Move the negative one from the denominator of .
Step 3.5.3.1.5
Rewrite as .
Step 3.5.3.1.6
Multiply by .
Step 3.5.3.1.7
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Rewrite as .
Step 5.2.3.2
Expand using the FOIL Method.
Step 5.2.3.2.1
Apply the distributive property.
Step 5.2.3.2.2
Apply the distributive property.
Step 5.2.3.2.3
Apply the distributive property.
Step 5.2.3.3
Simplify and combine like terms.
Step 5.2.3.3.1
Simplify each term.
Step 5.2.3.3.1.1
Multiply .
Step 5.2.3.3.1.1.1
Multiply by .
Step 5.2.3.3.1.1.2
Raise to the power of .
Step 5.2.3.3.1.1.3
Raise to the power of .
Step 5.2.3.3.1.1.4
Use the power rule to combine exponents.
Step 5.2.3.3.1.1.5
Add and .
Step 5.2.3.3.1.1.6
Multiply by .
Step 5.2.3.3.1.2
Rewrite as .
Step 5.2.3.3.1.2.1
Use to rewrite as .
Step 5.2.3.3.1.2.2
Apply the power rule and multiply exponents, .
Step 5.2.3.3.1.2.3
Combine and .
Step 5.2.3.3.1.2.4
Cancel the common factor of .
Step 5.2.3.3.1.2.4.1
Cancel the common factor.
Step 5.2.3.3.1.2.4.2
Rewrite the expression.
Step 5.2.3.3.1.2.5
Simplify.
Step 5.2.3.3.1.3
Move the negative in front of the fraction.
Step 5.2.3.3.1.4
Cancel the common factor of .
Step 5.2.3.3.1.4.1
Factor out of .
Step 5.2.3.3.1.4.2
Cancel the common factor.
Step 5.2.3.3.1.4.3
Rewrite the expression.
Step 5.2.3.3.1.5
Move to the left of .
Step 5.2.3.3.1.6
Rewrite as .
Step 5.2.3.3.1.7
Cancel the common factor of .
Step 5.2.3.3.1.7.1
Factor out of .
Step 5.2.3.3.1.7.2
Cancel the common factor.
Step 5.2.3.3.1.7.3
Rewrite the expression.
Step 5.2.3.3.1.8
Rewrite as .
Step 5.2.3.3.1.9
Multiply by .
Step 5.2.3.3.2
Subtract from .
Step 5.2.3.4
Apply the distributive property.
Step 5.2.3.5
Simplify.
Step 5.2.3.5.1
Cancel the common factor of .
Step 5.2.3.5.1.1
Move the leading negative in into the numerator.
Step 5.2.3.5.1.2
Factor out of .
Step 5.2.3.5.1.3
Cancel the common factor.
Step 5.2.3.5.1.4
Rewrite the expression.
Step 5.2.3.5.2
Multiply by .
Step 5.2.3.5.3
Multiply by .
Step 5.2.3.5.4
Multiply by .
Step 5.2.3.5.5
Multiply by .
Step 5.2.3.6
Apply the distributive property.
Step 5.2.3.7
Cancel the common factor of .
Step 5.2.3.7.1
Factor out of .
Step 5.2.3.7.2
Cancel the common factor.
Step 5.2.3.7.3
Rewrite the expression.
Step 5.2.3.8
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.2
Add and .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Subtract from .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Simplify the numerator.
Step 5.3.3.1.1
Factor out of .
Step 5.3.3.1.1.1
Factor out of .
Step 5.3.3.1.1.2
Factor out of .
Step 5.3.3.1.1.3
Factor out of .
Step 5.3.3.1.1.4
Factor out of .
Step 5.3.3.1.1.5
Factor out of .
Step 5.3.3.1.2
Factor by grouping.
Step 5.3.3.1.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.3.3.1.2.1.1
Factor out of .
Step 5.3.3.1.2.1.2
Rewrite as plus
Step 5.3.3.1.2.1.3
Apply the distributive property.
Step 5.3.3.1.2.2
Factor out the greatest common factor from each group.
Step 5.3.3.1.2.2.1
Group the first two terms and the last two terms.
Step 5.3.3.1.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.3.3.1.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5.3.3.1.3
Combine exponents.
Step 5.3.3.1.3.1
Factor out of .
Step 5.3.3.1.3.2
Rewrite as .
Step 5.3.3.1.3.3
Factor out of .
Step 5.3.3.1.3.4
Rewrite as .
Step 5.3.3.1.3.5
Raise to the power of .
Step 5.3.3.1.3.6
Raise to the power of .
Step 5.3.3.1.3.7
Use the power rule to combine exponents.
Step 5.3.3.1.3.8
Add and .
Step 5.3.3.1.3.9
Multiply by .
Step 5.3.3.1.4
Multiply by .
Step 5.3.3.1.5
Rewrite as .
Step 5.3.3.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 5.3.3.1.7
Apply the distributive property.
Step 5.3.3.1.8
Multiply by .
Step 5.3.3.1.9
Factor out of .
Step 5.3.3.1.9.1
Factor out of .
Step 5.3.3.1.9.2
Factor out of .
Step 5.3.3.1.9.3
Factor out of .
Step 5.3.3.2
Cancel the common factor of .
Step 5.3.3.2.1
Cancel the common factor.
Step 5.3.3.2.2
Divide by .
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Subtract from .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .