Precalculus Examples

Find the Roots (Zeros) F(x)=4x^4+5x^3+29x^2+35x+7
Step 1
Set equal to .
Step 2
Solve for .
Tap for more steps...
Step 2.1
Factor the left side of the equation.
Tap for more steps...
Step 2.1.1
Regroup terms.
Step 2.1.2
Factor out of .
Tap for more steps...
Step 2.1.2.1
Factor out of .
Step 2.1.2.2
Factor out of .
Step 2.1.2.3
Factor out of .
Step 2.1.3
Rewrite as .
Step 2.1.4
Let . Substitute for all occurrences of .
Step 2.1.5
Factor by grouping.
Tap for more steps...
Step 2.1.5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 2.1.5.1.1
Factor out of .
Step 2.1.5.1.2
Rewrite as plus
Step 2.1.5.1.3
Apply the distributive property.
Step 2.1.5.1.4
Multiply by .
Step 2.1.5.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.1.5.2.1
Group the first two terms and the last two terms.
Step 2.1.5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.1.5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.1.6
Replace all occurrences of with .
Step 2.1.7
Factor out of .
Tap for more steps...
Step 2.1.7.1
Factor out of .
Step 2.1.7.2
Factor out of .
Step 2.1.7.3
Factor out of .
Step 2.1.8
Let . Substitute for all occurrences of .
Step 2.1.9
Factor by grouping.
Tap for more steps...
Step 2.1.9.1
Reorder terms.
Step 2.1.9.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 2.1.9.2.1
Factor out of .
Step 2.1.9.2.2
Rewrite as plus
Step 2.1.9.2.3
Apply the distributive property.
Step 2.1.9.2.4
Multiply by .
Step 2.1.9.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.1.9.3.1
Group the first two terms and the last two terms.
Step 2.1.9.3.2
Factor out the greatest common factor (GCF) from each group.
Step 2.1.9.4
Factor the polynomial by factoring out the greatest common factor, .
Step 2.1.10
Factor.
Tap for more steps...
Step 2.1.10.1
Replace all occurrences of with .
Step 2.1.10.2
Remove unnecessary parentheses.
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Tap for more steps...
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Tap for more steps...
Step 2.3.2.1
Subtract from both sides of the equation.
Step 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3.2.3
Simplify .
Tap for more steps...
Step 2.3.2.3.1
Rewrite as .
Step 2.3.2.3.2
Rewrite as .
Step 2.3.2.3.3
Rewrite as .
Step 2.3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.3.2.4.1
First, use the positive value of the to find the first solution.
Step 2.3.2.4.2
Next, use the negative value of the to find the second solution.
Step 2.3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Tap for more steps...
Step 2.4.2.1
Subtract from both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.2.2.1.1
Cancel the common factor.
Step 2.4.2.2.2.1.2
Divide by .
Step 2.4.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.4.2.2.3.1
Move the negative in front of the fraction.
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Subtract from both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 3