Enter a problem...
Precalculus Examples
Step 1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2
Find every combination of . These are the possible roots of the polynomial function.
Step 3
Substitute the possible roots one by one into the polynomial to find the actual roots. Simplify to check if the value is , which means it is a root.
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Raise to the power of .
Step 4.1.2
Multiply by .
Step 4.1.3
Raise to the power of .
Step 4.1.4
Multiply by .
Step 4.1.5
Multiply by .
Step 4.2
Simplify by adding and subtracting.
Step 4.2.1
Subtract from .
Step 4.2.2
Subtract from .
Step 4.2.3
Add and .
Step 5
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 6
Step 6.1
Place the numbers representing the divisor and the dividend into a division-like configuration.
Step 6.2
The first number in the dividend is put into the first position of the result area (below the horizontal line).
Step 6.3
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.4
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.5
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.6
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.7
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.8
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.9
All numbers except the last become the coefficients of the quotient polynomial. The last value in the result line is the remainder.
Step 7
Step 7.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 7.1.1
Factor out of .
Step 7.1.2
Rewrite as plus
Step 7.1.3
Apply the distributive property.
Step 7.2
Factor out the greatest common factor from each group.
Step 7.2.1
Group the first two terms and the last two terms.
Step 7.2.2
Factor out the greatest common factor (GCF) from each group.
Step 7.3
Factor the polynomial by factoring out the greatest common factor, .
Step 8
Step 8.1
Factor out the greatest common factor from each group.
Step 8.1.1
Group the first two terms and the last two terms.
Step 8.1.2
Factor out the greatest common factor (GCF) from each group.
Step 8.2
Factor the polynomial by factoring out the greatest common factor, .
Step 8.3
Rewrite as .
Step 8.4
Factor.
Step 8.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 8.4.2
Remove unnecessary parentheses.
Step 9
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 10
Step 10.1
Set equal to .
Step 10.2
Solve for .
Step 10.2.1
Add to both sides of the equation.
Step 10.2.2
Divide each term in by and simplify.
Step 10.2.2.1
Divide each term in by .
Step 10.2.2.2
Simplify the left side.
Step 10.2.2.2.1
Cancel the common factor of .
Step 10.2.2.2.1.1
Cancel the common factor.
Step 10.2.2.2.1.2
Divide by .
Step 11
Step 11.1
Set equal to .
Step 11.2
Subtract from both sides of the equation.
Step 12
Step 12.1
Set equal to .
Step 12.2
Add to both sides of the equation.
Step 13
The final solution is all the values that make true.
Step 14