Precalculus Examples

Solve for x log base x of 1/64=-3/2
logx(164)=-32logx(164)=32
Step 1
Rewrite logx(164)=-32logx(164)=32 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b1b1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
x-32=164x32=164
Step 2
Solve for xx.
Tap for more steps...
Step 2.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
1x32=1641x32=164
Step 2.2
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
164=x321164=x321
Step 2.3
Solve the equation for xx.
Tap for more steps...
Step 2.3.1
Rewrite the equation as x321=164x321=164.
x321=164x321=164
Step 2.3.2
Move the terms containing xx to the left side and simplify.
Tap for more steps...
Step 2.3.2.1
Multiply x32x32 by 11.
x32=164x32=164
Step 2.3.2.2
Multiply 6464 by 11.
x32=64x32=64
x32=64x32=64
Step 2.3.3
Raise each side of the equation to the power of 2323 to eliminate the fractional exponent on the left side.
(x32)23=6423(x32)23=6423
Step 2.3.4
Simplify the exponent.
Tap for more steps...
Step 2.3.4.1
Simplify the left side.
Tap for more steps...
Step 2.3.4.1.1
Simplify (x32)23(x32)23.
Tap for more steps...
Step 2.3.4.1.1.1
Multiply the exponents in (x32)23(x32)23.
Tap for more steps...
Step 2.3.4.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x3223=6423x3223=6423
Step 2.3.4.1.1.1.2
Cancel the common factor of 33.
Tap for more steps...
Step 2.3.4.1.1.1.2.1
Cancel the common factor.
x3223=6423
Step 2.3.4.1.1.1.2.2
Rewrite the expression.
x122=6423
x122=6423
Step 2.3.4.1.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.4.1.1.1.3.1
Cancel the common factor.
x122=6423
Step 2.3.4.1.1.1.3.2
Rewrite the expression.
x1=6423
x1=6423
x1=6423
Step 2.3.4.1.1.2
Simplify.
x=6423
x=6423
x=6423
Step 2.3.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.4.2.1
Simplify 6423.
Tap for more steps...
Step 2.3.4.2.1.1
Simplify the expression.
Tap for more steps...
Step 2.3.4.2.1.1.1
Rewrite 64 as 43.
x=(43)23
Step 2.3.4.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
x=43(23)
x=43(23)
Step 2.3.4.2.1.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.3.4.2.1.2.1
Cancel the common factor.
x=43(23)
Step 2.3.4.2.1.2.2
Rewrite the expression.
x=42
x=42
Step 2.3.4.2.1.3
Raise 4 to the power of 2.
x=16
x=16
x=16
x=16
x=16
x=16
 [x2  12  π  xdx ]