Enter a problem...
Precalculus Examples
Step 1
Multiply both sides by .
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify .
Step 2.1.1.1
Apply the distributive property.
Step 2.1.1.2
Multiply by by adding the exponents.
Step 2.1.1.2.1
Move .
Step 2.1.1.2.2
Multiply by .
Step 2.2
Simplify the right side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Rewrite the expression.
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Factor by grouping.
Step 3.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.2.1.1
Factor out of .
Step 3.2.1.2
Rewrite as plus
Step 3.2.1.3
Apply the distributive property.
Step 3.2.2
Factor out the greatest common factor from each group.
Step 3.2.2.1
Group the first two terms and the last two terms.
Step 3.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.4
Set equal to and solve for .
Step 3.4.1
Set equal to .
Step 3.4.2
Solve for .
Step 3.4.2.1
Subtract from both sides of the equation.
Step 3.4.2.2
Divide each term in by and simplify.
Step 3.4.2.2.1
Divide each term in by .
Step 3.4.2.2.2
Simplify the left side.
Step 3.4.2.2.2.1
Cancel the common factor of .
Step 3.4.2.2.2.1.1
Cancel the common factor.
Step 3.4.2.2.2.1.2
Divide by .
Step 3.4.2.2.3
Simplify the right side.
Step 3.4.2.2.3.1
Move the negative in front of the fraction.
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Step 3.5.2.1
Add to both sides of the equation.
Step 3.5.2.2
Divide each term in by and simplify.
Step 3.5.2.2.1
Divide each term in by .
Step 3.5.2.2.2
Simplify the left side.
Step 3.5.2.2.2.1
Cancel the common factor of .
Step 3.5.2.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.2.1.2
Divide by .
Step 3.6
The final solution is all the values that make true.
Step 4
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
The domain is all values of that make the expression defined.
Step 5
Use each root to create test intervals.
Step 6
Step 6.1
Test a value on the interval to see if it makes the inequality true.
Step 6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.1.2
Replace with in the original inequality.
Step 6.1.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 6.2
Test a value on the interval to see if it makes the inequality true.
Step 6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.2.2
Replace with in the original inequality.
Step 6.2.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 6.3
Test a value on the interval to see if it makes the inequality true.
Step 6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.3.2
Replace with in the original inequality.
Step 6.3.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 6.4
Test a value on the interval to see if it makes the inequality true.
Step 6.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.4.2
Replace with in the original inequality.
Step 6.4.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 6.5
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
False
True
False
True
False
Step 7
The solution consists of all of the true intervals.
or
Step 8
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 9