Enter a problem...
Precalculus Examples
cos(a+b)cos(a)sin(b)=cot(b)-tan(a)cos(a+b)cos(a)sin(b)=cot(b)−tan(a)
Step 1
Start on the left side.
cos(a+b)cos(a)sin(b)cos(a+b)cos(a)sin(b)
Step 2
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)−sin(x)sin(y).
cos(a)cos(b)-sin(a)sin(b)cos(a)sin(b)cos(a)cos(b)−sin(a)sin(b)cos(a)sin(b)
Step 3
Step 3.1
Factor -1−1 out of -sin(a)sin(b)−sin(a)sin(b).
-(sin(a)sin(b))+cos(a)cos(b)cos(a)sin(b)−(sin(a)sin(b))+cos(a)cos(b)cos(a)sin(b)
Step 3.2
Factor -1−1 out of cos(a)cos(b)cos(a)cos(b).
-(sin(a)sin(b))-(-cos(a)cos(b))cos(a)sin(b)−(sin(a)sin(b))−(−cos(a)cos(b))cos(a)sin(b)
Step 3.3
Factor -1−1 out of -(sin(a)sin(b))-(-cos(a)cos(b))−(sin(a)sin(b))−(−cos(a)cos(b)).
-(sin(a)sin(b)-cos(a)cos(b))cos(a)sin(b)−(sin(a)sin(b)−cos(a)cos(b))cos(a)sin(b)
Step 3.4
Rewrite -(sin(a)sin(b)-cos(a)cos(b))−(sin(a)sin(b)−cos(a)cos(b)) as -1(sin(a)sin(b)-cos(a)cos(b))−1(sin(a)sin(b)−cos(a)cos(b)).
-1(sin(a)sin(b)-cos(a)cos(b))cos(a)sin(b)−1(sin(a)sin(b)−cos(a)cos(b))cos(a)sin(b)
Step 3.5
Move the negative in front of the fraction.
-sin(a)sin(b)-cos(a)cos(b)cos(a)sin(b)−sin(a)sin(b)−cos(a)cos(b)cos(a)sin(b)
-sin(a)sin(b)-cos(a)cos(b)cos(a)sin(b)−sin(a)sin(b)−cos(a)cos(b)cos(a)sin(b)
Step 4
Now consider the right side of the equation.
cot(b)-tan(a)cot(b)−tan(a)
Step 5
Step 5.1
Write cot(b)cot(b) in sines and cosines using the quotient identity.
cos(b)sin(b)-tan(a)cos(b)sin(b)−tan(a)
Step 5.2
Write tan(a)tan(a) in sines and cosines using the quotient identity.
cos(b)sin(b)-sin(a)cos(a)cos(b)sin(b)−sin(a)cos(a)
cos(b)sin(b)-sin(a)cos(a)cos(b)sin(b)−sin(a)cos(a)
Step 6
Step 6.1
To write cos(b)sin(b)cos(b)sin(b) as a fraction with a common denominator, multiply by cos(a)cos(a)cos(a)cos(a).
cos(b)sin(b)⋅cos(a)cos(a)-sin(a)cos(a)cos(b)sin(b)⋅cos(a)cos(a)−sin(a)cos(a)
Step 6.2
To write -sin(a)cos(a)−sin(a)cos(a) as a fraction with a common denominator, multiply by sin(b)sin(b)sin(b)sin(b).
cos(b)sin(b)⋅cos(a)cos(a)-sin(a)cos(a)⋅sin(b)sin(b)
Step 6.3
Write each expression with a common denominator of sin(b)cos(a), by multiplying each by an appropriate factor of 1.
Step 6.3.1
Multiply cos(b)sin(b) by cos(a)cos(a).
cos(b)cos(a)sin(b)cos(a)-sin(a)cos(a)⋅sin(b)sin(b)
Step 6.3.2
Multiply sin(a)cos(a) by sin(b)sin(b).
cos(b)cos(a)sin(b)cos(a)-sin(a)sin(b)cos(a)sin(b)
Step 6.3.3
Reorder the factors of sin(b)cos(a).
cos(b)cos(a)cos(a)sin(b)-sin(a)sin(b)cos(a)sin(b)
cos(b)cos(a)cos(a)sin(b)-sin(a)sin(b)cos(a)sin(b)
Step 6.4
Combine the numerators over the common denominator.
cos(b)cos(a)-sin(a)sin(b)cos(a)sin(b)
cos(b)cos(a)-sin(a)sin(b)cos(a)sin(b)
Step 7
Step 7.1
Factor -1 out of -sin(a)sin(b).
-(sin(a)sin(b))+cos(a)cos(b)cos(a)sin(b)
Step 7.2
Factor -1 out of cos(a)cos(b).
-(sin(a)sin(b))-(-cos(a)cos(b))cos(a)sin(b)
Step 7.3
Factor -1 out of -(sin(a)sin(b))-(-cos(a)cos(b)).
-(sin(a)sin(b)-cos(a)cos(b))cos(a)sin(b)
Step 7.4
Rewrite -(sin(a)sin(b)-cos(a)cos(b)) as -1(sin(a)sin(b)-cos(a)cos(b)).
-1(sin(a)sin(b)-cos(a)cos(b))cos(a)sin(b)
Step 7.5
Move the negative in front of the fraction.
-sin(a)sin(b)-cos(a)cos(b)cos(a)sin(b)
-sin(a)sin(b)-cos(a)cos(b)cos(a)sin(b)
Step 8
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(a+b)cos(a)sin(b)=cot(b)-tan(a) is an identity