Enter a problem...
Precalculus Examples
2x3-x=1
Step 1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x3-x)=ln(1)
Step 2
Expand ln(2x3-x) by moving x3-x outside the logarithm.
(x3-x)ln(2)=ln(1)
Step 3
Step 3.1
Apply the distributive property.
x3ln(2)-xln(2)=ln(1)
x3ln(2)-xln(2)=ln(1)
Step 4
Step 4.1
The natural logarithm of 1 is 0.
x3ln(2)-xln(2)=0
x3ln(2)-xln(2)=0
Step 5
Step 5.1
Factor xln(2) out of x3ln(2).
xln(2)x2-xln(2)=0
Step 5.2
Factor xln(2) out of -xln(2).
xln(2)x2+xln(2)⋅-1=0
Step 5.3
Factor xln(2) out of xln(2)x2+xln(2)⋅-1.
xln(2)(x2-1)=0
xln(2)(x2-1)=0
Step 6
Rewrite 1 as 12.
xln(2)(x2-12)=0
Step 7
Step 7.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
xln(2)((x+1)(x-1))=0
Step 7.2
Remove unnecessary parentheses.
xln(2)(x+1)(x-1)=0
xln(2)(x+1)(x-1)=0
Step 8
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x+1=0
x-1=0
Step 9
Set x equal to 0.
x=0
Step 10
Step 10.1
Set x+1 equal to 0.
x+1=0
Step 10.2
Subtract 1 from both sides of the equation.
x=-1
x=-1
Step 11
Step 11.1
Set x-1 equal to 0.
x-1=0
Step 11.2
Add 1 to both sides of the equation.
x=1
x=1
Step 12
The final solution is all the values that make xln(2)(x+1)(x-1)=0 true.
x=0,-1,1