Enter a problem...
Precalculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.2.2
Remove parentheses.
Step 3.2.3
The LCM of one and any expression is the expression.
Step 3.3
Multiply each term in by to eliminate the fractions.
Step 3.3.1
Multiply each term in by .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Rewrite the expression.
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Apply the distributive property.
Step 3.3.3.2
Move to the left of .
Step 3.4
Solve the equation.
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Subtract from both sides of the equation.
Step 3.4.3
Factor out of .
Step 3.4.3.1
Factor out of .
Step 3.4.3.2
Factor out of .
Step 3.4.3.3
Factor out of .
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Cancel the common factor of .
Step 3.4.4.2.1.1
Cancel the common factor.
Step 3.4.4.2.1.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
Combine the numerators over the common denominator.
Step 3.4.4.3.2
Rewrite as .
Step 3.4.4.3.3
Factor out of .
Step 3.4.4.3.4
Factor out of .
Step 3.4.4.3.5
Move the negative in front of the fraction.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Remove parentheses.
Step 5.2.4
Multiply the numerator and denominator of the fraction by .
Step 5.2.4.1
Multiply by .
Step 5.2.4.2
Combine.
Step 5.2.5
Apply the distributive property.
Step 5.2.6
Cancel the common factor of .
Step 5.2.6.1
Cancel the common factor.
Step 5.2.6.2
Rewrite the expression.
Step 5.2.7
Simplify the numerator.
Step 5.2.7.1
Factor out of .
Step 5.2.7.1.1
Factor out of .
Step 5.2.7.1.2
Factor out of .
Step 5.2.7.1.3
Factor out of .
Step 5.2.7.2
Combine and .
Step 5.2.7.3
To write as a fraction with a common denominator, multiply by .
Step 5.2.7.4
Combine and .
Step 5.2.7.5
Combine the numerators over the common denominator.
Step 5.2.7.6
Reorder terms.
Step 5.2.7.7
Rewrite in a factored form.
Step 5.2.7.7.1
Apply the distributive property.
Step 5.2.7.7.2
Multiply by .
Step 5.2.7.7.3
Multiply by .
Step 5.2.7.7.4
Apply the distributive property.
Step 5.2.7.7.5
Multiply by .
Step 5.2.7.7.6
Subtract from .
Step 5.2.7.7.7
Add and .
Step 5.2.7.7.8
Subtract from .
Step 5.2.7.8
Move the negative in front of the fraction.
Step 5.2.7.9
Remove unnecessary parentheses.
Step 5.2.7.10
Factor out negative.
Step 5.2.8
Simplify the denominator.
Step 5.2.8.1
Multiply by .
Step 5.2.8.2
Add and .
Step 5.2.8.3
Subtract from .
Step 5.2.8.4
Add and .
Step 5.2.9
Simplify terms.
Step 5.2.9.1
Factor out of .
Step 5.2.9.2
Cancel the common factor of .
Step 5.2.9.2.1
Factor out of .
Step 5.2.9.2.2
Cancel the common factor.
Step 5.2.9.2.3
Rewrite the expression.
Step 5.2.9.3
Rewrite using the commutative property of multiplication.
Step 5.2.9.4
Apply the distributive property.
Step 5.2.10
Multiply .
Step 5.2.10.1
Multiply by .
Step 5.2.10.2
Combine and .
Step 5.2.11
Multiply .
Step 5.2.11.1
Combine and .
Step 5.2.11.2
Raise to the power of .
Step 5.2.11.3
Raise to the power of .
Step 5.2.11.4
Use the power rule to combine exponents.
Step 5.2.11.5
Add and .
Step 5.2.12
Combine the numerators over the common denominator.
Step 5.2.13
Reorder and .
Step 5.2.14
Factor out of .
Step 5.2.14.1
Factor out of .
Step 5.2.14.2
Factor out of .
Step 5.2.14.3
Factor out of .
Step 5.2.15
Cancel the common factor of and .
Step 5.2.15.1
Factor out of .
Step 5.2.15.2
Rewrite as .
Step 5.2.15.3
Factor out of .
Step 5.2.15.4
Rewrite as .
Step 5.2.15.5
Cancel the common factor.
Step 5.2.15.6
Divide by .
Step 5.2.16
Simplify the expression.
Step 5.2.16.1
Move to the left of .
Step 5.2.16.2
Rewrite as .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Remove parentheses.
Step 5.3.4
Multiply the numerator and denominator of the fraction by .
Step 5.3.4.1
Multiply by .
Step 5.3.4.2
Combine.
Step 5.3.5
Apply the distributive property.
Step 5.3.6
Cancel the common factor of .
Step 5.3.6.1
Move the leading negative in into the numerator.
Step 5.3.6.2
Cancel the common factor.
Step 5.3.6.3
Rewrite the expression.
Step 5.3.7
Simplify the numerator.
Step 5.3.7.1
Factor out of .
Step 5.3.7.1.1
Factor out of .
Step 5.3.7.1.2
Factor out of .
Step 5.3.7.2
Multiply .
Step 5.3.7.2.1
Multiply by .
Step 5.3.7.2.2
Multiply by .
Step 5.3.7.3
To write as a fraction with a common denominator, multiply by .
Step 5.3.7.4
Combine the numerators over the common denominator.
Step 5.3.7.5
Reorder terms.
Step 5.3.7.6
Rewrite in a factored form.
Step 5.3.7.6.1
Apply the distributive property.
Step 5.3.7.6.2
Multiply by .
Step 5.3.7.6.3
Add and .
Step 5.3.7.6.4
Subtract from .
Step 5.3.7.6.5
Add and .
Step 5.3.8
Simplify the denominator.
Step 5.3.8.1
Apply the distributive property.
Step 5.3.8.2
Multiply by .
Step 5.3.8.3
Move to the left of .
Step 5.3.8.4
Apply the distributive property.
Step 5.3.8.5
Multiply by .
Step 5.3.8.6
Multiply by .
Step 5.3.8.7
Add and .
Step 5.3.8.8
Subtract from .
Step 5.3.8.9
Add and .
Step 5.3.9
Simplify terms.
Step 5.3.9.1
Factor out of .
Step 5.3.9.2
Cancel the common factor of .
Step 5.3.9.2.1
Factor out of .
Step 5.3.9.2.2
Cancel the common factor.
Step 5.3.9.2.3
Rewrite the expression.
Step 5.3.9.3
Multiply by .
Step 5.3.9.4
Cancel the common factor of and .
Step 5.3.9.4.1
Reorder terms.
Step 5.3.9.4.2
Cancel the common factor.
Step 5.3.9.4.3
Divide by .
Step 5.4
Since and , then is the inverse of .