Enter a problem...
Precalculus Examples
f(x)=xx2-1f(x)=xx2−1
Step 1
Step 1.1
Rewrite 11 as 1212.
f(x)=xx2-12f(x)=xx2−12
Step 1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=1b=1.
f(x)=x(x+1)(x-1)f(x)=x(x+1)(x−1)
f(x)=x(x+1)(x-1)f(x)=x(x+1)(x−1)
Step 2
Step 2.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=-x((-x)+1)((-x)-1)f(−x)=−x((−x)+1)((−x)−1)
Step 2.2
Move the negative in front of the fraction.
f(-x)=-x(-x+1)(-x-1)f(−x)=−x(−x+1)(−x−1)
Step 2.3
Factor -1−1 out of -x−x.
f(-x)=-x(-(x)+1)(-x-1)f(−x)=−x(−(x)+1)(−x−1)
Step 2.4
Rewrite 11 as -1(-1)−1(−1).
f(-x)=-x(-(x)-1⋅-1)(-x-1)
Step 2.5
Factor -1 out of -(x)-1(-1).
f(-x)=-x-(x-1)(-x-1)
Step 2.6
Rewrite -(x-1) as -1(x-1).
f(-x)=-x-1(x-1)(-x-1)
Step 2.7
Factor -1 out of -x.
f(-x)=-x-1(x-1)(-(x)-1)
Step 2.8
Rewrite -1 as -1(1).
f(-x)=-x-1(x-1)(-(x)-1⋅1)
Step 2.9
Factor -1 out of -(x)-1(1).
f(-x)=-x-1(x-1)(-(x+1))
Step 2.10
Simplify the expression.
Step 2.10.1
Rewrite -(x+1) as -1(x+1).
f(-x)=-x-1(x-1)(-1(x+1))
Step 2.10.2
Multiply -1 by -1.
f(-x)=-x1(x-1)(x+1)
Step 2.10.3
Multiply x-1 by 1.
f(-x)=-x(x-1)(x+1)
f(-x)=-x(x-1)(x+1)
f(-x)=-x(x-1)(x+1)
Step 3
Step 3.1
Check if f(-x)=f(x).
Step 3.2
Since -x(x-1)(x+1)≠x(x+1)(x-1), the function is not even.
The function is not even
The function is not even
Step 4
Step 4.1
Multiply -1 by x(x+1)(x-1).
-f(x)=-x(x+1)(x-1)
Step 4.2
Since -x(x-1)(x+1)=-x(x+1)(x-1), the function is odd.
The function is odd
The function is odd
Step 5
