Enter a problem...
Precalculus Examples
x43-5x23+6=0x43−5x23+6=0
Step 1
Step 1.1
Rewrite x43x43 as (x23)2(x23)2.
(x23)2-5x23+6=0(x23)2−5x23+6=0
Step 1.2
Let u=x23u=x23. Substitute uu for all occurrences of x23x23.
u2-5u+6=0u2−5u+6=0
Step 1.3
Factor u2-5u+6u2−5u+6 using the AC method.
Step 1.3.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 66 and whose sum is -5−5.
-3,-2−3,−2
Step 1.3.2
Write the factored form using these integers.
(u-3)(u-2)=0(u−3)(u−2)=0
(u-3)(u-2)=0(u−3)(u−2)=0
Step 1.4
Replace all occurrences of uu with x23x23.
(x23-3)(x23-2)=0(x23−3)(x23−2)=0
(x23-3)(x23-2)=0(x23−3)(x23−2)=0
Step 2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x23-3=0x23−3=0
x23-2=0x23−2=0
Step 3
Step 3.1
Set x23-3x23−3 equal to 00.
x23-3=0x23−3=0
Step 3.2
Solve x23-3=0x23−3=0 for xx.
Step 3.2.1
Add 33 to both sides of the equation.
x23=3x23=3
Step 3.2.2
Raise each side of the equation to the power of 3232 to eliminate the fractional exponent on the left side.
(x23)32=±332(x23)32=±332
Step 3.2.3
Simplify the left side.
Step 3.2.3.1
Simplify (x23)32(x23)32.
Step 3.2.3.1.1
Multiply the exponents in (x23)32(x23)32.
Step 3.2.3.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x23⋅32=±332x23⋅32=±332
Step 3.2.3.1.1.2
Cancel the common factor of 22.
Step 3.2.3.1.1.2.1
Cancel the common factor.
x23⋅32=±332
Step 3.2.3.1.1.2.2
Rewrite the expression.
x13⋅3=±332
x13⋅3=±332
Step 3.2.3.1.1.3
Cancel the common factor of 3.
Step 3.2.3.1.1.3.1
Cancel the common factor.
x13⋅3=±332
Step 3.2.3.1.1.3.2
Rewrite the expression.
x1=±332
x1=±332
x1=±332
Step 3.2.3.1.2
Simplify.
x=±332
x=±332
x=±332
Step 3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.2.4.1
First, use the positive value of the ± to find the first solution.
x=332
Step 3.2.4.2
Next, use the negative value of the ± to find the second solution.
x=-332
Step 3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
x=332,-332
x=332,-332
x=332,-332
x=332,-332
Step 4
Step 4.1
Set x23-2 equal to 0.
x23-2=0
Step 4.2
Solve x23-2=0 for x.
Step 4.2.1
Add 2 to both sides of the equation.
x23=2
Step 4.2.2
Raise each side of the equation to the power of 32 to eliminate the fractional exponent on the left side.
(x23)32=±232
Step 4.2.3
Simplify the left side.
Step 4.2.3.1
Simplify (x23)32.
Step 4.2.3.1.1
Multiply the exponents in (x23)32.
Step 4.2.3.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x23⋅32=±232
Step 4.2.3.1.1.2
Cancel the common factor of 2.
Step 4.2.3.1.1.2.1
Cancel the common factor.
x23⋅32=±232
Step 4.2.3.1.1.2.2
Rewrite the expression.
x13⋅3=±232
x13⋅3=±232
Step 4.2.3.1.1.3
Cancel the common factor of 3.
Step 4.2.3.1.1.3.1
Cancel the common factor.
x13⋅3=±232
Step 4.2.3.1.1.3.2
Rewrite the expression.
x1=±232
x1=±232
x1=±232
Step 4.2.3.1.2
Simplify.
x=±232
x=±232
x=±232
Step 4.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.2.4.1
First, use the positive value of the ± to find the first solution.
x=232
Step 4.2.4.2
Next, use the negative value of the ± to find the second solution.
x=-232
Step 4.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
x=232,-232
x=232,-232
x=232,-232
x=232,-232
Step 5
The final solution is all the values that make (x23-3)(x23-2)=0 true.
x=332,-332,232,-232
Step 6
The result can be shown in multiple forms.
Exact Form:
x=332,-332,232,-232
Decimal Form:
x=5.19615242…,-5.19615242…,2.82842712…,-2.82842712…