Enter a problem...
Precalculus Examples
cos(arcsin(x-hr))cos(arcsin(x−hr))
Step 1
Step 1.1
Draw a triangle in the plane with vertices (√12-(x-hr)2,x-hr)⎛⎝√12−(x−hr)2,x−hr⎞⎠, (√12-(x-hr)2,0)⎛⎝√12−(x−hr)2,0⎞⎠, and the origin. Then arcsin(x-hr)arcsin(x−hr) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-(x-hr)2,x-hr)⎛⎝√12−(x−hr)2,x−hr⎞⎠. Therefore, cos(arcsin(x-hr))cos(arcsin(x−hr)) is √1-(x-hr)2√1−(x−hr)2.
√1-(x-hr)2√1−(x−hr)2
Step 1.2
Rewrite 11 as 1212.
√12-(x-hr)2√12−(x−hr)2
√12-(x-hr)2√12−(x−hr)2
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=1a=1 and b=x-hrb=x−hr.
√(1+x-hr)(1-x-hr)√(1+x−hr)(1−x−hr)
Step 3
Step 3.1
Write 11 as a fraction with a common denominator.
√(rr+x-hr)(1-x-hr)√(rr+x−hr)(1−x−hr)
Step 3.2
Combine the numerators over the common denominator.
√r+x-hr(1-x-hr)√r+x−hr(1−x−hr)
Step 3.3
Write 11 as a fraction with a common denominator.
√r+x-hr(rr-x-hr)√r+x−hr(rr−x−hr)
Step 3.4
Combine the numerators over the common denominator.
√r+x-hr⋅r-(x-h)r√r+x−hr⋅r−(x−h)r
Step 3.5
Rewrite r-(x-h)rr−(x−h)r in a factored form.
Step 3.5.1
Apply the distributive property.
√r+x-hr⋅r-x--hr√r+x−hr⋅r−x−−hr
Step 3.5.2
Multiply --h−−h.
Step 3.5.2.1
Multiply -1−1 by -1−1.
√r+x-hr⋅r-x+1hr√r+x−hr⋅r−x+1hr
Step 3.5.2.2
Multiply hh by 11.
√r+x-hr⋅r-x+hr√r+x−hr⋅r−x+hr
√r+x-hr⋅r-x+hr√r+x−hr⋅r−x+hr
√r+x-hr⋅r-x+hr√r+x−hr⋅r−x+hr
√r+x-hr⋅r-x+hr√r+x−hr⋅r−x+hr
Step 4
Multiply r+x-hrr+x−hr by r-x+hrr−x+hr.
√(r+x-h)(r-x+h)r⋅r√(r+x−h)(r−x+h)r⋅r
Step 5
Multiply rr by rr.
√(r+x-h)(r-x+h)r2√(r+x−h)(r−x+h)r2
Step 6
Step 6.1
Factor the perfect power 1212 out of (r+x-h)(r-x+h)(r+x−h)(r−x+h).
√12((r+x-h)(r-x+h))r2√12((r+x−h)(r−x+h))r2
Step 6.2
Factor the perfect power r2r2 out of r2r2.
√12((r+x-h)(r-x+h))r2⋅1
Step 6.3
Rearrange the fraction 12((r+x-h)(r-x+h))r2⋅1.
√(1r)2((r+x-h)(r-x+h))
√(1r)2((r+x-h)(r-x+h))
Step 7
Pull terms out from under the radical.
1r√(r+x-h)(r-x+h)
Step 8
Combine 1r and √(r+x-h)(r-x+h).
√(r+x-h)(r-x+h)r