Precalculus Examples

Verify the Identity (tan(x)-sin(-x))/(1+cos(x))=tan(x)
tan(x)-sin(-x)1+cos(x)=tan(x)tan(x)sin(x)1+cos(x)=tan(x)
Step 1
Start on the left side.
tan(x)-sin(-x)1+cos(x)tan(x)sin(x)1+cos(x)
Step 2
Since sin(-x)sin(x) is an odd function, rewrite sin(-x)sin(x) as -sin(x)sin(x).
tan(x)--sin(x)1+cos(x)tan(x)sin(x)1+cos(x)
Step 3
Write tan(x)tan(x) in sines and cosines using the quotient identity.
sin(x)cos(x)--sin(x)1+cos(x)sin(x)cos(x)sin(x)1+cos(x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Multiply the numerator and denominator of the fraction by cos(x)cos(x).
Tap for more steps...
Step 4.1.1
Multiply sin(x)cos(x)--sin(x)1+cos(x)sin(x)cos(x)sin(x)1+cos(x) by cos(x)cos(x)cos(x)cos(x).
cos(x)cos(x)sin(x)cos(x)--sin(x)1+cos(x)cos(x)cos(x)sin(x)cos(x)sin(x)1+cos(x)
Step 4.1.2
Combine.
cos(x)(sin(x)cos(x)--sin(x))cos(x)(1+cos(x))cos(x)(sin(x)cos(x)sin(x))cos(x)(1+cos(x))
cos(x)(sin(x)cos(x)--sin(x))cos(x)(1+cos(x))cos(x)(sin(x)cos(x)sin(x))cos(x)(1+cos(x))
Step 4.2
Apply the distributive property.
cos(x)sin(x)cos(x)+cos(x)(--sin(x))cos(x)1+cos(x)cos(x)cos(x)sin(x)cos(x)+cos(x)(sin(x))cos(x)1+cos(x)cos(x)
Step 4.3
Cancel the common factor of cos(x)cos(x).
Tap for more steps...
Step 4.3.1
Cancel the common factor.
cos(x)sin(x)cos(x)+cos(x)(--sin(x))cos(x)1+cos(x)cos(x)
Step 4.3.2
Rewrite the expression.
sin(x)+cos(x)(--sin(x))cos(x)1+cos(x)cos(x)
sin(x)+cos(x)(--sin(x))cos(x)1+cos(x)cos(x)
Step 4.4
Simplify the numerator.
Tap for more steps...
Step 4.4.1
Factor sin(x) out of sin(x)+cos(x)(--sin(x)).
Tap for more steps...
Step 4.4.1.1
Multiply by 1.
sin(x)1+cos(x)(--sin(x))cos(x)1+cos(x)cos(x)
Step 4.4.1.2
Factor sin(x) out of cos(x)(--sin(x)).
sin(x)1+sin(x)(cos(x)(--1))cos(x)1+cos(x)cos(x)
Step 4.4.1.3
Factor sin(x) out of sin(x)1+sin(x)(cos(x)(--1)).
sin(x)(1+cos(x)(--1))cos(x)1+cos(x)cos(x)
sin(x)(1+cos(x)(--1))cos(x)1+cos(x)cos(x)
Step 4.4.2
Multiply -1 by -1.
sin(x)(1+cos(x)1)cos(x)1+cos(x)cos(x)
Step 4.4.3
Multiply cos(x) by 1.
sin(x)(1+cos(x))cos(x)1+cos(x)cos(x)
sin(x)(1+cos(x))cos(x)1+cos(x)cos(x)
Step 4.5
Factor cos(x) out of cos(x)1+cos(x)cos(x).
Tap for more steps...
Step 4.5.1
Factor cos(x) out of cos(x)1.
sin(x)(1+cos(x))cos(x)(1)+cos(x)cos(x)
Step 4.5.2
Factor cos(x) out of cos(x)cos(x).
sin(x)(1+cos(x))cos(x)(1)+cos(x)(cos(x))
Step 4.5.3
Factor cos(x) out of cos(x)(1)+cos(x)(cos(x)).
sin(x)(1+cos(x))cos(x)(1+cos(x))
sin(x)(1+cos(x))cos(x)(1+cos(x))
Step 4.6
Cancel the common factor of 1+cos(x).
sin(x)cos(x)
sin(x)cos(x)
Step 5
Rewrite sin(x)cos(x) as tan(x).
tan(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
tan(x)-sin(-x)1+cos(x)=tan(x) is an identity
 [x2  12  π  xdx ]