Precalculus Examples

Simplify cos(x)+tan(x)sin(x)
cos(x)+tan(x)sin(x)cos(x)+tan(x)sin(x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite tan(x)tan(x) in terms of sines and cosines.
cos(x)+sin(x)cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)
Step 1.2
Multiply sin(x)cos(x)sin(x)sin(x)cos(x)sin(x).
Tap for more steps...
Step 1.2.1
Combine sin(x)cos(x)sin(x)cos(x) and sin(x)sin(x).
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
Step 1.2.2
Raise sin(x)sin(x) to the power of 11.
cos(x)+sin1(x)sin(x)cos(x)cos(x)+sin1(x)sin(x)cos(x)
Step 1.2.3
Raise sin(x)sin(x) to the power of 11.
cos(x)+sin1(x)sin1(x)cos(x)cos(x)+sin1(x)sin1(x)cos(x)
Step 1.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
cos(x)+sin(x)1+1cos(x)cos(x)+sin(x)1+1cos(x)
Step 1.2.5
Add 11 and 11.
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Factor sin(x)sin(x) out of sin2(x)sin2(x).
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
Step 2.2
Separate fractions.
cos(x)+sin(x)1sin(x)cos(x)cos(x)+sin(x)1sin(x)cos(x)
Step 2.3
Convert from sin(x)cos(x)sin(x)cos(x) to tan(x)tan(x).
cos(x)+sin(x)1tan(x)cos(x)+sin(x)1tan(x)
Step 2.4
Divide sin(x)sin(x) by 11.
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]  x2  12  π  xdx