Enter a problem...
Precalculus Examples
cos(x)+tan(x)sin(x)cos(x)+tan(x)sin(x)
Step 1
Step 1.1
Rewrite tan(x)tan(x) in terms of sines and cosines.
cos(x)+sin(x)cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)
Step 1.2
Multiply sin(x)cos(x)sin(x)sin(x)cos(x)sin(x).
Step 1.2.1
Combine sin(x)cos(x)sin(x)cos(x) and sin(x)sin(x).
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
Step 1.2.2
Raise sin(x)sin(x) to the power of 11.
cos(x)+sin1(x)sin(x)cos(x)cos(x)+sin1(x)sin(x)cos(x)
Step 1.2.3
Raise sin(x)sin(x) to the power of 11.
cos(x)+sin1(x)sin1(x)cos(x)cos(x)+sin1(x)sin1(x)cos(x)
Step 1.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
cos(x)+sin(x)1+1cos(x)cos(x)+sin(x)1+1cos(x)
Step 1.2.5
Add 11 and 11.
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
cos(x)+sin2(x)cos(x)cos(x)+sin2(x)cos(x)
Step 2
Step 2.1
Factor sin(x)sin(x) out of sin2(x)sin2(x).
cos(x)+sin(x)sin(x)cos(x)cos(x)+sin(x)sin(x)cos(x)
Step 2.2
Separate fractions.
cos(x)+sin(x)1⋅sin(x)cos(x)cos(x)+sin(x)1⋅sin(x)cos(x)
Step 2.3
Convert from sin(x)cos(x)sin(x)cos(x) to tan(x)tan(x).
cos(x)+sin(x)1tan(x)cos(x)+sin(x)1tan(x)
Step 2.4
Divide sin(x)sin(x) by 11.
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)
cos(x)+sin(x)tan(x)cos(x)+sin(x)tan(x)