Enter a problem...
Precalculus Examples
5x-2=33x+25x−2=33x+2
Step 1
Take the log of both sides of the equation.
ln(5x-2)=ln(33x+2)ln(5x−2)=ln(33x+2)
Step 2
Expand ln(5x-2)ln(5x−2) by moving x-2x−2 outside the logarithm.
(x-2)ln(5)=ln(33x+2)(x−2)ln(5)=ln(33x+2)
Step 3
Expand ln(33x+2)ln(33x+2) by moving 3x+23x+2 outside the logarithm.
(x-2)ln(5)=(3x+2)ln(3)(x−2)ln(5)=(3x+2)ln(3)
Step 4
Step 4.1
Simplify (x-2)ln(5)(x−2)ln(5).
Step 4.1.1
Rewrite.
0+0+(x-2)ln(5)=(3x+2)ln(3)0+0+(x−2)ln(5)=(3x+2)ln(3)
Step 4.1.2
Simplify by adding zeros.
(x-2)ln(5)=(3x+2)ln(3)(x−2)ln(5)=(3x+2)ln(3)
Step 4.1.3
Apply the distributive property.
xln(5)-2ln(5)=(3x+2)ln(3)xln(5)−2ln(5)=(3x+2)ln(3)
xln(5)-2ln(5)=(3x+2)ln(3)xln(5)−2ln(5)=(3x+2)ln(3)
Step 4.2
Apply the distributive property.
xln(5)-2ln(5)=3xln(3)+2ln(3)xln(5)−2ln(5)=3xln(3)+2ln(3)
Step 4.3
Subtract 3xln(3)3xln(3) from both sides of the equation.
xln(5)-2ln(5)-3xln(3)=2ln(3)xln(5)−2ln(5)−3xln(3)=2ln(3)
Step 4.4
Add 2ln(5)2ln(5) to both sides of the equation.
xln(5)-3xln(3)=2ln(3)+2ln(5)xln(5)−3xln(3)=2ln(3)+2ln(5)
Step 4.5
Factor xx out of xln(5)-3xln(3)xln(5)−3xln(3).
Step 4.5.1
Factor xx out of xln(5)xln(5).
x(ln(5))-3xln(3)=2ln(3)+2ln(5)x(ln(5))−3xln(3)=2ln(3)+2ln(5)
Step 4.5.2
Factor xx out of -3xln(3)−3xln(3).
x(ln(5))+x(-3ln(3))=2ln(3)+2ln(5)x(ln(5))+x(−3ln(3))=2ln(3)+2ln(5)
Step 4.5.3
Factor xx out of x(ln(5))+x(-3ln(3))x(ln(5))+x(−3ln(3)).
x(ln(5)-3ln(3))=2ln(3)+2ln(5)x(ln(5)−3ln(3))=2ln(3)+2ln(5)
x(ln(5)-3ln(3))=2ln(3)+2ln(5)x(ln(5)−3ln(3))=2ln(3)+2ln(5)
Step 4.6
Divide each term in x(ln(5)-3ln(3))=2ln(3)+2ln(5)x(ln(5)−3ln(3))=2ln(3)+2ln(5) by ln(5)-3ln(3)ln(5)−3ln(3) and simplify.
Step 4.6.1
Divide each term in x(ln(5)-3ln(3))=2ln(3)+2ln(5)x(ln(5)−3ln(3))=2ln(3)+2ln(5) by ln(5)-3ln(3)ln(5)−3ln(3).
x(ln(5)-3ln(3))ln(5)-3ln(3)=2ln(3)ln(5)-3ln(3)+2ln(5)ln(5)-3ln(3)x(ln(5)−3ln(3))ln(5)−3ln(3)=2ln(3)ln(5)−3ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.2
Simplify the left side.
Step 4.6.2.1
Cancel the common factor of ln(5)-3ln(3)ln(5)−3ln(3).
Step 4.6.2.1.1
Cancel the common factor.
x(ln(5)-3ln(3))ln(5)-3ln(3)=2ln(3)ln(5)-3ln(3)+2ln(5)ln(5)-3ln(3)x(ln(5)−3ln(3))ln(5)−3ln(3)=2ln(3)ln(5)−3ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.2.1.2
Divide xx by 11.
x=2ln(3)ln(5)-3ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)ln(5)−3ln(3)+2ln(5)ln(5)−3ln(3)
x=2ln(3)ln(5)-3ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)ln(5)−3ln(3)+2ln(5)ln(5)−3ln(3)
x=2ln(3)ln(5)-3ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)ln(5)−3ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.3
Simplify the right side.
Step 4.6.3.1
Combine the numerators over the common denominator.
x=2ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.3.2
Factor 22 out of 2ln(3)+2ln(5)2ln(3)+2ln(5).
Step 4.6.3.2.1
Factor 22 out of 2ln(3)2ln(3).
x=2ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.3.2.2
Factor 22 out of 2ln(5)2ln(5).
x=2ln(3)+2ln(5)ln(5)-3ln(3)x=2ln(3)+2ln(5)ln(5)−3ln(3)
Step 4.6.3.2.3
Factor 22 out of 2ln(3)+2ln(5)2ln(3)+2ln(5).
x=2(ln(3)+ln(5))ln(5)-3ln(3)x=2(ln(3)+ln(5))ln(5)−3ln(3)
x=2(ln(3)+ln(5))ln(5)-3ln(3)x=2(ln(3)+ln(5))ln(5)−3ln(3)
x=2(ln(3)+ln(5))ln(5)-3ln(3)x=2(ln(3)+ln(5))ln(5)−3ln(3)
x=2(ln(3)+ln(5))ln(5)-3ln(3)
x=2(ln(3)+ln(5))ln(5)-3ln(3)
Step 5
The result can be shown in multiple forms.
Exact Form:
x=2(ln(3)+ln(5))ln(5)-3ln(3)
Decimal Form:
x=-3.21163648…