Enter a problem...
Precalculus Examples
4+3log(2x)=164+3log(2x)=16
Step 1
Step 1.1
Subtract 44 from both sides of the equation.
3log(2x)=16-43log(2x)=16−4
Step 1.2
Subtract 44 from 1616.
3log(2x)=123log(2x)=12
3log(2x)=123log(2x)=12
Step 2
Step 2.1
Divide each term in 3log(2x)=123log(2x)=12 by 33.
3log(2x)3=1233log(2x)3=123
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 33.
Step 2.2.1.1
Cancel the common factor.
3log(2x)3=123
Step 2.2.1.2
Divide log(2x) by 1.
log(2x)=123
log(2x)=123
log(2x)=123
Step 2.3
Simplify the right side.
Step 2.3.1
Divide 12 by 3.
log(2x)=4
log(2x)=4
log(2x)=4
Step 3
Rewrite log(2x)=4 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
104=2x
Step 4
Step 4.1
Rewrite the equation as 2x=104.
2x=104
Step 4.2
Divide each term in 2x=104 by 2 and simplify.
Step 4.2.1
Divide each term in 2x=104 by 2.
2x2=1042
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of 2.
Step 4.2.2.1.1
Cancel the common factor.
2x2=1042
Step 4.2.2.1.2
Divide x by 1.
x=1042
x=1042
x=1042
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Raise 10 to the power of 4.
x=100002
Step 4.2.3.2
Divide 10000 by 2.
x=5000
x=5000
x=5000
x=5000