Precalculus Examples

Solve for x 4+3 log of 2x=16
4+3log(2x)=164+3log(2x)=16
Step 1
Move all terms not containing log(2x)log(2x) to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract 44 from both sides of the equation.
3log(2x)=16-43log(2x)=164
Step 1.2
Subtract 44 from 1616.
3log(2x)=123log(2x)=12
3log(2x)=123log(2x)=12
Step 2
Divide each term in 3log(2x)=123log(2x)=12 by 33 and simplify.
Tap for more steps...
Step 2.1
Divide each term in 3log(2x)=123log(2x)=12 by 33.
3log(2x)3=1233log(2x)3=123
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
3log(2x)3=123
Step 2.2.1.2
Divide log(2x) by 1.
log(2x)=123
log(2x)=123
log(2x)=123
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Divide 12 by 3.
log(2x)=4
log(2x)=4
log(2x)=4
Step 3
Rewrite log(2x)=4 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
104=2x
Step 4
Solve for x.
Tap for more steps...
Step 4.1
Rewrite the equation as 2x=104.
2x=104
Step 4.2
Divide each term in 2x=104 by 2 and simplify.
Tap for more steps...
Step 4.2.1
Divide each term in 2x=104 by 2.
2x2=1042
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.2.1.1
Cancel the common factor.
2x2=1042
Step 4.2.2.1.2
Divide x by 1.
x=1042
x=1042
x=1042
Step 4.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.3.1
Raise 10 to the power of 4.
x=100002
Step 4.2.3.2
Divide 10000 by 2.
x=5000
x=5000
x=5000
x=5000
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]