Precalculus Examples

Solve for x (2^x-2^(-x))/3=4
2x-2-x3=42x2x3=4
Step 1
Multiply both sides by 33.
2x-2-x33=432x2x33=43
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of 33.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
2x-2-x33=43
Step 2.1.1.2
Rewrite the expression.
2x-2-x=43
2x-2-x=43
2x-2-x=43
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Multiply 4 by 3.
2x-2-x=12
2x-2-x=12
2x-2-x=12
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Rewrite 2-x as exponentiation.
2x-(2x)-1=12
Step 3.2
Substitute u for 2x.
u-u-1=12
Step 3.3
Rewrite the expression using the negative exponent rule b-n=1bn.
u-1u=12
Step 3.4
Solve for u.
Tap for more steps...
Step 3.4.1
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.4.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,u,1
Step 3.4.1.2
The LCM of one and any expression is the expression.
u
u
Step 3.4.2
Multiply each term in u-1u=12 by u to eliminate the fractions.
Tap for more steps...
Step 3.4.2.1
Multiply each term in u-1u=12 by u.
uu-1uu=12u
Step 3.4.2.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.2.1.1
Multiply u by u.
u2-1uu=12u
Step 3.4.2.2.1.2
Cancel the common factor of u.
Tap for more steps...
Step 3.4.2.2.1.2.1
Move the leading negative in -1u into the numerator.
u2+-1uu=12u
Step 3.4.2.2.1.2.2
Cancel the common factor.
u2+-1uu=12u
Step 3.4.2.2.1.2.3
Rewrite the expression.
u2-1=12u
u2-1=12u
u2-1=12u
u2-1=12u
u2-1=12u
Step 3.4.3
Solve the equation.
Tap for more steps...
Step 3.4.3.1
Subtract 12u from both sides of the equation.
u2-1-12u=0
Step 3.4.3.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3.4.3.3
Substitute the values a=1, b=-12, and c=-1 into the quadratic formula and solve for u.
12±(-12)2-4(1-1)21
Step 3.4.3.4
Simplify.
Tap for more steps...
Step 3.4.3.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.3.4.1.1
Raise -12 to the power of 2.
u=12±144-41-121
Step 3.4.3.4.1.2
Multiply -41-1.
Tap for more steps...
Step 3.4.3.4.1.2.1
Multiply -4 by 1.
u=12±144-4-121
Step 3.4.3.4.1.2.2
Multiply -4 by -1.
u=12±144+421
u=12±144+421
Step 3.4.3.4.1.3
Add 144 and 4.
u=12±14821
Step 3.4.3.4.1.4
Rewrite 148 as 2237.
Tap for more steps...
Step 3.4.3.4.1.4.1
Factor 4 out of 148.
u=12±4(37)21
Step 3.4.3.4.1.4.2
Rewrite 4 as 22.
u=12±223721
u=12±223721
Step 3.4.3.4.1.5
Pull terms out from under the radical.
u=12±23721
u=12±23721
Step 3.4.3.4.2
Multiply 2 by 1.
u=12±2372
Step 3.4.3.4.3
Simplify 12±2372.
u=6±37
u=6±37
Step 3.4.3.5
The final answer is the combination of both solutions.
u=6+37,6-37
u=6+37,6-37
u=6+37,6-37
Step 3.5
Substitute 6+37 for u in u=2x.
6+37=2x
Step 3.6
Solve 6+37=2x.
Tap for more steps...
Step 3.6.1
Rewrite the equation as 2x=6+37.
2x=6+37
Step 3.6.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(6+37)
Step 3.6.3
Expand ln(2x) by moving x outside the logarithm.
xln(2)=ln(6+37)
Step 3.6.4
Divide each term in xln(2)=ln(6+37) by ln(2) and simplify.
Tap for more steps...
Step 3.6.4.1
Divide each term in xln(2)=ln(6+37) by ln(2).
xln(2)ln(2)=ln(6+37)ln(2)
Step 3.6.4.2
Simplify the left side.
Tap for more steps...
Step 3.6.4.2.1
Cancel the common factor of ln(2).
Tap for more steps...
Step 3.6.4.2.1.1
Cancel the common factor.
xln(2)ln(2)=ln(6+37)ln(2)
Step 3.6.4.2.1.2
Divide x by 1.
x=ln(6+37)ln(2)
x=ln(6+37)ln(2)
x=ln(6+37)ln(2)
x=ln(6+37)ln(2)
x=ln(6+37)ln(2)
Step 3.7
Substitute 6-37 for u in u=2x.
6-37=2x
Step 3.8
Solve 6-37=2x.
Tap for more steps...
Step 3.8.1
Rewrite the equation as 2x=6-37.
2x=6-37
Step 3.8.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(6-37)
Step 3.8.3
The equation cannot be solved because ln(6-37) is undefined.
Undefined
Step 3.8.4
There is no solution for 2x=6-37
No solution
No solution
Step 3.9
List the solutions that makes the equation true.
x=ln(6+37)ln(2)
x=ln(6+37)ln(2)
Step 4
The result can be shown in multiple forms.
Exact Form:
x=ln(6+37)ln(2)
Decimal Form:
x=3.59487843
 [x2  12  π  xdx ]