Enter a problem...
Precalculus Examples
2x-2-x3=42x−2−x3=4
Step 1
Multiply both sides by 33.
2x-2-x3⋅3=4⋅32x−2−x3⋅3=4⋅3
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of 33.
Step 2.1.1.1
Cancel the common factor.
2x-2-x3⋅3=4⋅3
Step 2.1.1.2
Rewrite the expression.
2x-2-x=4⋅3
2x-2-x=4⋅3
2x-2-x=4⋅3
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply 4 by 3.
2x-2-x=12
2x-2-x=12
2x-2-x=12
Step 3
Step 3.1
Rewrite 2-x as exponentiation.
2x-(2x)-1=12
Step 3.2
Substitute u for 2x.
u-u-1=12
Step 3.3
Rewrite the expression using the negative exponent rule b-n=1bn.
u-1u=12
Step 3.4
Solve for u.
Step 3.4.1
Find the LCD of the terms in the equation.
Step 3.4.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,u,1
Step 3.4.1.2
The LCM of one and any expression is the expression.
u
u
Step 3.4.2
Multiply each term in u-1u=12 by u to eliminate the fractions.
Step 3.4.2.1
Multiply each term in u-1u=12 by u.
u⋅u-1uu=12u
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Simplify each term.
Step 3.4.2.2.1.1
Multiply u by u.
u2-1uu=12u
Step 3.4.2.2.1.2
Cancel the common factor of u.
Step 3.4.2.2.1.2.1
Move the leading negative in -1u into the numerator.
u2+-1uu=12u
Step 3.4.2.2.1.2.2
Cancel the common factor.
u2+-1uu=12u
Step 3.4.2.2.1.2.3
Rewrite the expression.
u2-1=12u
u2-1=12u
u2-1=12u
u2-1=12u
u2-1=12u
Step 3.4.3
Solve the equation.
Step 3.4.3.1
Subtract 12u from both sides of the equation.
u2-1-12u=0
Step 3.4.3.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 3.4.3.3
Substitute the values a=1, b=-12, and c=-1 into the quadratic formula and solve for u.
12±√(-12)2-4⋅(1⋅-1)2⋅1
Step 3.4.3.4
Simplify.
Step 3.4.3.4.1
Simplify the numerator.
Step 3.4.3.4.1.1
Raise -12 to the power of 2.
u=12±√144-4⋅1⋅-12⋅1
Step 3.4.3.4.1.2
Multiply -4⋅1⋅-1.
Step 3.4.3.4.1.2.1
Multiply -4 by 1.
u=12±√144-4⋅-12⋅1
Step 3.4.3.4.1.2.2
Multiply -4 by -1.
u=12±√144+42⋅1
u=12±√144+42⋅1
Step 3.4.3.4.1.3
Add 144 and 4.
u=12±√1482⋅1
Step 3.4.3.4.1.4
Rewrite 148 as 22⋅37.
Step 3.4.3.4.1.4.1
Factor 4 out of 148.
u=12±√4(37)2⋅1
Step 3.4.3.4.1.4.2
Rewrite 4 as 22.
u=12±√22⋅372⋅1
u=12±√22⋅372⋅1
Step 3.4.3.4.1.5
Pull terms out from under the radical.
u=12±2√372⋅1
u=12±2√372⋅1
Step 3.4.3.4.2
Multiply 2 by 1.
u=12±2√372
Step 3.4.3.4.3
Simplify 12±2√372.
u=6±√37
u=6±√37
Step 3.4.3.5
The final answer is the combination of both solutions.
u=6+√37,6-√37
u=6+√37,6-√37
u=6+√37,6-√37
Step 3.5
Substitute 6+√37 for u in u=2x.
6+√37=2x
Step 3.6
Solve 6+√37=2x.
Step 3.6.1
Rewrite the equation as 2x=6+√37.
2x=6+√37
Step 3.6.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(6+√37)
Step 3.6.3
Expand ln(2x) by moving x outside the logarithm.
xln(2)=ln(6+√37)
Step 3.6.4
Divide each term in xln(2)=ln(6+√37) by ln(2) and simplify.
Step 3.6.4.1
Divide each term in xln(2)=ln(6+√37) by ln(2).
xln(2)ln(2)=ln(6+√37)ln(2)
Step 3.6.4.2
Simplify the left side.
Step 3.6.4.2.1
Cancel the common factor of ln(2).
Step 3.6.4.2.1.1
Cancel the common factor.
xln(2)ln(2)=ln(6+√37)ln(2)
Step 3.6.4.2.1.2
Divide x by 1.
x=ln(6+√37)ln(2)
x=ln(6+√37)ln(2)
x=ln(6+√37)ln(2)
x=ln(6+√37)ln(2)
x=ln(6+√37)ln(2)
Step 3.7
Substitute 6-√37 for u in u=2x.
6-√37=2x
Step 3.8
Solve 6-√37=2x.
Step 3.8.1
Rewrite the equation as 2x=6-√37.
2x=6-√37
Step 3.8.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2x)=ln(6-√37)
Step 3.8.3
The equation cannot be solved because ln(6-√37) is undefined.
Undefined
Step 3.8.4
There is no solution for 2x=6-√37
No solution
No solution
Step 3.9
List the solutions that makes the equation true.
x=ln(6+√37)ln(2)
x=ln(6+√37)ln(2)
Step 4
The result can be shown in multiple forms.
Exact Form:
x=ln(6+√37)ln(2)
Decimal Form:
x=3.59487843…