Precalculus Examples

Simplify square root of 5a^3b* square root of 10ab
5a3b10ab5a3b10ab
Step 1
Rewrite 5a3b5a3b as a2(5ab)a2(5ab).
Tap for more steps...
Step 1.1
Factor out a2a2.
5(a2a)b10ab5(a2a)b10ab
Step 1.2
Reorder 55 and a2a2.
a25ab10aba25ab10ab
Step 1.3
Add parentheses.
a25(ab)10aba25(ab)10ab
Step 1.4
Add parentheses.
a2(5ab)10aba2(5ab)10ab
a2(5ab)10aba2(5ab)10ab
Step 2
Pull terms out from under the radical.
a5ab10aba5ab10ab
Step 3
Multiply a5ab10aba5ab10ab.
Tap for more steps...
Step 3.1
Combine using the product rule for radicals.
a10ab(5ab)a10ab(5ab)
Step 3.2
Multiply 55 by 1010.
a50ab(ab)a50ab(ab)
Step 3.3
Raise aa to the power of 11.
a50(a1a)bba50(a1a)bb
Step 3.4
Raise aa to the power of 11.
a50(a1a1)bba50(a1a1)bb
Step 3.5
Use the power rule aman=am+naman=am+n to combine exponents.
a50a1+1bba50a1+1bb
Step 3.6
Add 11 and 11.
a50a2bba50a2bb
Step 3.7
Raise bb to the power of 11.
a50a2(b1b)a50a2(b1b)
Step 3.8
Raise bb to the power of 11.
a50a2(b1b1)a50a2(b1b1)
Step 3.9
Use the power rule aman=am+naman=am+n to combine exponents.
a50a2b1+1a50a2b1+1
Step 3.10
Add 11 and 11.
a50a2b2a50a2b2
a50a2b2
Step 4
Rewrite 50a2b2 as (5ab)22.
Tap for more steps...
Step 4.1
Factor 25 out of 50.
a25(2)a2b2
Step 4.2
Rewrite 25 as 52.
a522a2b2
Step 4.3
Move 2.
a52a2b22
Step 4.4
Rewrite 52a2b2 as (5ab)2.
a(5ab)22
a(5ab)22
Step 5
Pull terms out from under the radical.
a(5ab2)
Step 6
Rewrite using the commutative property of multiplication.
52a(ab)
Step 7
Multiply a by a by adding the exponents.
Tap for more steps...
Step 7.1
Move a.
52(aa)b
Step 7.2
Multiply a by a.
52a2b
52a2b
 [x2  12  π  xdx ]