Enter a problem...
Precalculus Examples
ln(x-6)+ln(x+7)=1ln(x−6)+ln(x+7)=1
Step 1
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
ln((x-6)(x+7))=1ln((x−6)(x+7))=1
Step 1.2
Expand (x-6)(x+7)(x−6)(x+7) using the FOIL Method.
Step 1.2.1
Apply the distributive property.
ln(x(x+7)-6(x+7))=1ln(x(x+7)−6(x+7))=1
Step 1.2.2
Apply the distributive property.
ln(x⋅x+x⋅7-6(x+7))=1ln(x⋅x+x⋅7−6(x+7))=1
Step 1.2.3
Apply the distributive property.
ln(x⋅x+x⋅7-6x-6⋅7)=1ln(x⋅x+x⋅7−6x−6⋅7)=1
ln(x⋅x+x⋅7-6x-6⋅7)=1ln(x⋅x+x⋅7−6x−6⋅7)=1
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply xx by xx.
ln(x2+x⋅7-6x-6⋅7)=1ln(x2+x⋅7−6x−6⋅7)=1
Step 1.3.1.2
Move 77 to the left of xx.
ln(x2+7⋅x-6x-6⋅7)=1ln(x2+7⋅x−6x−6⋅7)=1
Step 1.3.1.3
Multiply -6−6 by 77.
ln(x2+7x-6x-42)=1ln(x2+7x−6x−42)=1
ln(x2+7x-6x-42)=1ln(x2+7x−6x−42)=1
Step 1.3.2
Subtract 6x6x from 7x7x.
ln(x2+x-42)=1ln(x2+x−42)=1
ln(x2+x-42)=1ln(x2+x−42)=1
ln(x2+x-42)=1ln(x2+x−42)=1
Step 2
To solve for xx, rewrite the equation using properties of logarithms.
eln(x2+x-42)=e1eln(x2+x−42)=e1
Step 3
Rewrite ln(x2+x-42)=1ln(x2+x−42)=1 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
e1=x2+x-42e1=x2+x−42
Step 4
Step 4.1
Rewrite the equation as x2+x-42=e1x2+x−42=e1.
x2+x-42=ex2+x−42=e
Step 4.2
Subtract ee from both sides of the equation.
x2+x-42-e=0x2+x−42−e=0
Step 4.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 4.4
Substitute the values a=1a=1, b=1b=1, and c=-42-ec=−42−e into the quadratic formula and solve for xx.
-1±√12-4⋅(1⋅(-42-e))2⋅1−1±√12−4⋅(1⋅(−42−e))2⋅1
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
One to any power is one.
x=-1±√1-4⋅1⋅(-42-e)2⋅1x=−1±√1−4⋅1⋅(−42−e)2⋅1
Step 4.5.1.2
Multiply -4−4 by 11.
x=-1±√1-4⋅(-42-e)2⋅1x=−1±√1−4⋅(−42−e)2⋅1
Step 4.5.1.3
Apply the distributive property.
x=-1±√1-4⋅-42-4(-e)2⋅1x=−1±√1−4⋅−42−4(−e)2⋅1
Step 4.5.1.4
Multiply -4−4 by -42−42.
x=-1±√1+168-4(-e)2⋅1x=−1±√1+168−4(−e)2⋅1
Step 4.5.1.5
Multiply -1−1 by -4−4.
x=-1±√1+168+4e2⋅1x=−1±√1+168+4e2⋅1
Step 4.5.1.6
Add 11 and 168168.
x=-1±√169+4e2⋅1x=−1±√169+4e2⋅1
x=-1±√169+4e2⋅1x=−1±√169+4e2⋅1
Step 4.5.2
Multiply 22 by 11.
x=-1±√169+4e2x=−1±√169+4e2
x=-1±√169+4e2x=−1±√169+4e2
Step 4.6
The final answer is the combination of both solutions.
x=-1-√169+4e2,-1+√169+4e2x=−1−√169+4e2,−1+√169+4e2
x=-1-√169+4e2,-1+√169+4e2x=−1−√169+4e2,−1+√169+4e2
Step 5
Exclude the solutions that do not make ln(x-6)+ln(x+7)=1ln(x−6)+ln(x+7)=1 true.
x=-1-√169+4e2x=−1−√169+4e2
Step 6
The result can be shown in multiple forms.
Exact Form:
x=-1-√169+4e2x=−1−√169+4e2
Decimal Form:
x=6.20583938…x=6.20583938…