Precalculus Examples

Solve for x natural log of x-6+ natural log of x+7=1
ln(x-6)+ln(x+7)=1ln(x6)+ln(x+7)=1
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
ln((x-6)(x+7))=1ln((x6)(x+7))=1
Step 1.2
Expand (x-6)(x+7)(x6)(x+7) using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
ln(x(x+7)-6(x+7))=1ln(x(x+7)6(x+7))=1
Step 1.2.2
Apply the distributive property.
ln(xx+x7-6(x+7))=1ln(xx+x76(x+7))=1
Step 1.2.3
Apply the distributive property.
ln(xx+x7-6x-67)=1ln(xx+x76x67)=1
ln(xx+x7-6x-67)=1ln(xx+x76x67)=1
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply xx by xx.
ln(x2+x7-6x-67)=1ln(x2+x76x67)=1
Step 1.3.1.2
Move 77 to the left of xx.
ln(x2+7x-6x-67)=1ln(x2+7x6x67)=1
Step 1.3.1.3
Multiply -66 by 77.
ln(x2+7x-6x-42)=1ln(x2+7x6x42)=1
ln(x2+7x-6x-42)=1ln(x2+7x6x42)=1
Step 1.3.2
Subtract 6x6x from 7x7x.
ln(x2+x-42)=1ln(x2+x42)=1
ln(x2+x-42)=1ln(x2+x42)=1
ln(x2+x-42)=1ln(x2+x42)=1
Step 2
To solve for xx, rewrite the equation using properties of logarithms.
eln(x2+x-42)=e1eln(x2+x42)=e1
Step 3
Rewrite ln(x2+x-42)=1ln(x2+x42)=1 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b1b1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
e1=x2+x-42e1=x2+x42
Step 4
Solve for xx.
Tap for more steps...
Step 4.1
Rewrite the equation as x2+x-42=e1x2+x42=e1.
x2+x-42=ex2+x42=e
Step 4.2
Subtract ee from both sides of the equation.
x2+x-42-e=0x2+x42e=0
Step 4.3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 4.4
Substitute the values a=1a=1, b=1b=1, and c=-42-ec=42e into the quadratic formula and solve for xx.
-1±12-4(1(-42-e))211±124(1(42e))21
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Simplify the numerator.
Tap for more steps...
Step 4.5.1.1
One to any power is one.
x=-1±1-41(-42-e)21x=1±141(42e)21
Step 4.5.1.2
Multiply -44 by 11.
x=-1±1-4(-42-e)21x=1±14(42e)21
Step 4.5.1.3
Apply the distributive property.
x=-1±1-4-42-4(-e)21x=1±14424(e)21
Step 4.5.1.4
Multiply -44 by -4242.
x=-1±1+168-4(-e)21x=1±1+1684(e)21
Step 4.5.1.5
Multiply -11 by -44.
x=-1±1+168+4e21x=1±1+168+4e21
Step 4.5.1.6
Add 11 and 168168.
x=-1±169+4e21x=1±169+4e21
x=-1±169+4e21x=1±169+4e21
Step 4.5.2
Multiply 22 by 11.
x=-1±169+4e2x=1±169+4e2
x=-1±169+4e2x=1±169+4e2
Step 4.6
The final answer is the combination of both solutions.
x=-1-169+4e2,-1+169+4e2x=1169+4e2,1+169+4e2
x=-1-169+4e2,-1+169+4e2x=1169+4e2,1+169+4e2
Step 5
Exclude the solutions that do not make ln(x-6)+ln(x+7)=1ln(x6)+ln(x+7)=1 true.
x=-1-169+4e2x=1169+4e2
Step 6
The result can be shown in multiple forms.
Exact Form:
x=-1-169+4e2x=1169+4e2
Decimal Form:
x=6.20583938x=6.20583938
 [x2  12  π  xdx ]  x2  12  π  xdx