Enter a problem...
Precalculus Examples
f(x)=x2-9x-3f(x)=x2−9x−3
Step 1
Find where the expression x2-9x-3x2−9x−3 is undefined.
x=3x=3
Step 2
The vertical asymptotes occur at areas of infinite discontinuity.
No Vertical Asymptotes
Step 3
Consider the rational function R(x)=axnbxmR(x)=axnbxm where nn is the degree of the numerator and mm is the degree of the denominator.
1. If n<mn<m, then the x-axis, y=0y=0, is the horizontal asymptote.
2. If n=mn=m, then the horizontal asymptote is the line y=aby=ab.
3. If n>mn>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 4
Find nn and mm.
n=2n=2
m=1m=1
Step 5
Since n>mn>m, there is no horizontal asymptote.
No Horizontal Asymptotes
Step 6
Step 6.1
Simplify the expression.
Step 6.1.1
Simplify the numerator.
Step 6.1.1.1
Rewrite 99 as 3232.
x2-32x-3x2−32x−3
Step 6.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=3b=3.
(x+3)(x-3)x-3(x+3)(x−3)x−3
(x+3)(x-3)x-3(x+3)(x−3)x−3
Step 6.1.2
Cancel the common factor of x-3x−3.
Step 6.1.2.1
Cancel the common factor.
(x+3)(x-3)x-3
Step 6.1.2.2
Divide x+3 by 1.
x+3
x+3
x+3
Step 6.2
The oblique asymptote is the polynomial portion of the long division result.
y=x+3
y=x+3
Step 7
This is the set of all asymptotes.
No Vertical Asymptotes
No Horizontal Asymptotes
Oblique Asymptotes: y=x+3
Step 8