Enter a problem...
Precalculus Examples
f(x)=3-x7f(x)=3−x7
Step 1
Write f(x)=3-x7f(x)=3−x7 as an equation.
y=3-x7y=3−x7
Step 2
Interchange the variables.
x=3-y7x=3−y7
Step 3
Step 3.1
Rewrite the equation as 3-y7=x3−y7=x.
3-y7=x3−y7=x
Step 3.2
Multiply both sides by 77.
3-y7⋅7=x⋅73−y7⋅7=x⋅7
Step 3.3
Simplify.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify 3-y7⋅73−y7⋅7.
Step 3.3.1.1.1
Cancel the common factor of 77.
Step 3.3.1.1.1.1
Cancel the common factor.
3-y7⋅7=x⋅7
Step 3.3.1.1.1.2
Rewrite the expression.
3-y=x⋅7
3-y=x⋅7
Step 3.3.1.1.2
Reorder 3 and -y.
-y+3=x⋅7
-y+3=x⋅7
-y+3=x⋅7
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Move 7 to the left of x.
-y+3=7x
-y+3=7x
-y+3=7x
Step 3.4
Solve for y.
Step 3.4.1
Subtract 3 from both sides of the equation.
-y=7x-3
Step 3.4.2
Divide each term in -y=7x-3 by -1 and simplify.
Step 3.4.2.1
Divide each term in -y=7x-3 by -1.
-y-1=7x-1+-3-1
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Dividing two negative values results in a positive value.
y1=7x-1+-3-1
Step 3.4.2.2.2
Divide y by 1.
y=7x-1+-3-1
y=7x-1+-3-1
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Move the negative one from the denominator of 7x-1.
y=-1⋅(7x)+-3-1
Step 3.4.2.3.1.2
Rewrite -1⋅(7x) as -(7x).
y=-(7x)+-3-1
Step 3.4.2.3.1.3
Multiply 7 by -1.
y=-7x+-3-1
Step 3.4.2.3.1.4
Divide -3 by -1.
y=-7x+3
y=-7x+3
y=-7x+3
y=-7x+3
y=-7x+3
y=-7x+3
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=-7x+3
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(3-x7) by substituting in the value of f into f-1.
f-1(3-x7)=-73-x7+3
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Cancel the common factor of 7.
Step 5.2.3.1.1
Factor 7 out of -7.
f-1(3-x7)=7(-1)(3-x7)+3
Step 5.2.3.1.2
Cancel the common factor.
f-1(3-x7)=7⋅(-13-x7)+3
Step 5.2.3.1.3
Rewrite the expression.
f-1(3-x7)=-1(3-x)+3
f-1(3-x7)=-1(3-x)+3
Step 5.2.3.2
Apply the distributive property.
f-1(3-x7)=-1⋅3-1(-x)+3
Step 5.2.3.3
Multiply -1 by 3.
f-1(3-x7)=-3-1(-x)+3
Step 5.2.3.4
Multiply -1(-x).
Step 5.2.3.4.1
Multiply -1 by -1.
f-1(3-x7)=-3+1x+3
Step 5.2.3.4.2
Multiply x by 1.
f-1(3-x7)=-3+x+3
f-1(3-x7)=-3+x+3
f-1(3-x7)=-3+x+3
Step 5.2.4
Combine the opposite terms in -3+x+3.
Step 5.2.4.1
Add -3 and 3.
f-1(3-x7)=x+0
Step 5.2.4.2
Add x and 0.
f-1(3-x7)=x
f-1(3-x7)=x
f-1(3-x7)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(-7x+3) by substituting in the value of f-1 into f.
f(-7x+3)=3-(-7x+3)7
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Apply the distributive property.
f(-7x+3)=3-(-7x)-1⋅37
Step 5.3.3.2
Multiply -7 by -1.
f(-7x+3)=3+7x-1⋅37
Step 5.3.3.3
Multiply -1 by 3.
f(-7x+3)=3+7x-37
Step 5.3.3.4
Subtract 3 from 3.
f(-7x+3)=7x+07
Step 5.3.3.5
Add 7x and 0.
f(-7x+3)=7x7
f(-7x+3)=7x7
Step 5.3.4
Cancel the common factor of 7.
Step 5.3.4.1
Cancel the common factor.
f(-7x+3)=7x7
Step 5.3.4.2
Divide x by 1.
f(-7x+3)=x
f(-7x+3)=x
f(-7x+3)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=-7x+3 is the inverse of f(x)=3-x7.
f-1(x)=-7x+3
f-1(x)=-7x+3