Precalculus Examples

Find the Vertex f(x)=3x^2-12x+1
f(x)=3x2-12x+1
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for 3x2-12x+1.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=3
b=-12
c=1
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=-1223
Step 1.1.3.2
Simplify the right side.
Tap for more steps...
Step 1.1.3.2.1
Cancel the common factor of -12 and 2.
Tap for more steps...
Step 1.1.3.2.1.1
Factor 2 out of -12.
d=2-623
Step 1.1.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.1.2.1
Factor 2 out of 23.
d=2-62(3)
Step 1.1.3.2.1.2.2
Cancel the common factor.
d=2-623
Step 1.1.3.2.1.2.3
Rewrite the expression.
d=-63
d=-63
d=-63
Step 1.1.3.2.2
Cancel the common factor of -6 and 3.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 3 out of -6.
d=3-23
Step 1.1.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.2.2.1
Factor 3 out of 3.
d=3-23(1)
Step 1.1.3.2.2.2.2
Cancel the common factor.
d=3-231
Step 1.1.3.2.2.2.3
Rewrite the expression.
d=-21
Step 1.1.3.2.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
d=-2
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=1-(-12)243
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Raise -12 to the power of 2.
e=1-14443
Step 1.1.4.2.1.2
Multiply 4 by 3.
e=1-14412
Step 1.1.4.2.1.3
Divide 144 by 12.
e=1-112
Step 1.1.4.2.1.4
Multiply -1 by 12.
e=1-12
e=1-12
Step 1.1.4.2.2
Subtract 12 from 1.
e=-11
e=-11
e=-11
Step 1.1.5
Substitute the values of a, d, and e into the vertex form 3(x-2)2-11.
3(x-2)2-11
3(x-2)2-11
Step 1.2
Set y equal to the new right side.
y=3(x-2)2-11
y=3(x-2)2-11
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=3
h=2
k=-11
Step 3
Find the vertex (h,k).
(2,-11)
Step 4
image of graph
f(x)=3x2-12x+1
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]