Precalculus Examples

Solve by Addition/Elimination 3x-4y=4 , x+3y=-3
3x-4y=4 , x+3y=-3
Step 1
Multiply each equation by the value that makes the coefficients of x opposite.
3x-4y=4
(-3)(x+3y)=(-3)(-3)
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify (-3)(x+3y).
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
3x-4y=4
-3x-3(3y)=(-3)(-3)
Step 2.1.1.2
Multiply 3 by -3.
3x-4y=4
-3x-9y=(-3)(-3)
3x-4y=4
-3x-9y=(-3)(-3)
3x-4y=4
-3x-9y=(-3)(-3)
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Multiply -3 by -3.
3x-4y=4
-3x-9y=9
3x-4y=4
-3x-9y=9
3x-4y=4
-3x-9y=9
Step 3
Add the two equations together to eliminate x from the system.
3x-4y=4
+-3x-9y=9
-13y=13
Step 4
Divide each term in -13y=13 by -13 and simplify.
Tap for more steps...
Step 4.1
Divide each term in -13y=13 by -13.
-13y-13=13-13
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of -13.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
-13y-13=13-13
Step 4.2.1.2
Divide y by 1.
y=13-13
y=13-13
y=13-13
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide 13 by -13.
y=-1
y=-1
y=-1
Step 5
Substitute the value found for y into one of the original equations, then solve for x.
Tap for more steps...
Step 5.1
Substitute the value found for y into one of the original equations to solve for x.
3x-4-1=4
Step 5.2
Multiply -4 by -1.
3x+4=4
Step 5.3
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 5.3.1
Subtract 4 from both sides of the equation.
3x=4-4
Step 5.3.2
Subtract 4 from 4.
3x=0
3x=0
Step 5.4
Divide each term in 3x=0 by 3 and simplify.
Tap for more steps...
Step 5.4.1
Divide each term in 3x=0 by 3.
3x3=03
Step 5.4.2
Simplify the left side.
Tap for more steps...
Step 5.4.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 5.4.2.1.1
Cancel the common factor.
3x3=03
Step 5.4.2.1.2
Divide x by 1.
x=03
x=03
x=03
Step 5.4.3
Simplify the right side.
Tap for more steps...
Step 5.4.3.1
Divide 0 by 3.
x=0
x=0
x=0
x=0
Step 6
The solution to the independent system of equations can be represented as a point.
(0,-1)
Step 7
The result can be shown in multiple forms.
Point Form:
(0,-1)
Equation Form:
x=0,y=-1
Step 8
 [x2  12  π  xdx ]