Precalculus Examples

Evaluate cos(pi/12)
cos(π12)cos(π12)
Step 1
Split π12π12 into two angles where the values of the six trigonometric functions are known.
cos(π4-π6)cos(π4π6)
Step 2
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(xy)=cos(x)cos(y)+sin(x)sin(y).
cos(π4)cos(π6)+sin(π4)sin(π6)cos(π4)cos(π6)+sin(π4)sin(π6)
Step 3
The exact value of cos(π4)cos(π4) is 2222.
22cos(π6)+sin(π4)sin(π6)22cos(π6)+sin(π4)sin(π6)
Step 4
The exact value of cos(π6)cos(π6) is 3232.
2232+sin(π4)sin(π6)2232+sin(π4)sin(π6)
Step 5
The exact value of sin(π4)sin(π4) is 2222.
2232+22sin(π6)2232+22sin(π6)
Step 6
The exact value of sin(π6)sin(π6) is 1212.
2232+22122232+2212
Step 7
Simplify 2232+22122232+2212.
Tap for more steps...
Step 7.1
Simplify each term.
Tap for more steps...
Step 7.1.1
Multiply 22322232.
Tap for more steps...
Step 7.1.1.1
Multiply 2222 by 3232.
2322+22122322+2212
Step 7.1.1.2
Combine using the product rule for radicals.
2322+22122322+2212
Step 7.1.1.3
Multiply 22 by 33.
622+2212622+2212
Step 7.1.1.4
Multiply 22 by 22.
64+221264+2212
64+2212
Step 7.1.2
Multiply 2212.
Tap for more steps...
Step 7.1.2.1
Multiply 22 by 12.
64+222
Step 7.1.2.2
Multiply 2 by 2.
64+24
64+24
64+24
Step 7.2
Combine the numerators over the common denominator.
6+24
6+24
Step 8
The result can be shown in multiple forms.
Exact Form:
6+24
Decimal Form:
0.96592582
 [x2  12  π  xdx ]