Enter a problem...
Precalculus Examples
cos(π12)cos(π12)
Step 1
Split π12π12 into two angles where the values of the six trigonometric functions are known.
cos(π4-π6)cos(π4−π6)
Step 2
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(x−y)=cos(x)cos(y)+sin(x)sin(y).
cos(π4)cos(π6)+sin(π4)sin(π6)cos(π4)cos(π6)+sin(π4)sin(π6)
Step 3
The exact value of cos(π4)cos(π4) is √22√22.
√22cos(π6)+sin(π4)sin(π6)√22cos(π6)+sin(π4)sin(π6)
Step 4
The exact value of cos(π6)cos(π6) is √32√32.
√22⋅√32+sin(π4)sin(π6)√22⋅√32+sin(π4)sin(π6)
Step 5
The exact value of sin(π4)sin(π4) is √22√22.
√22⋅√32+√22sin(π6)√22⋅√32+√22sin(π6)
Step 6
The exact value of sin(π6)sin(π6) is 1212.
√22⋅√32+√22⋅12√22⋅√32+√22⋅12
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Multiply √22⋅√32√22⋅√32.
Step 7.1.1.1
Multiply √22√22 by √32√32.
√2√32⋅2+√22⋅12√2√32⋅2+√22⋅12
Step 7.1.1.2
Combine using the product rule for radicals.
√2⋅32⋅2+√22⋅12√2⋅32⋅2+√22⋅12
Step 7.1.1.3
Multiply 22 by 33.
√62⋅2+√22⋅12√62⋅2+√22⋅12
Step 7.1.1.4
Multiply 22 by 22.
√64+√22⋅12√64+√22⋅12
√64+√22⋅12
Step 7.1.2
Multiply √22⋅12.
Step 7.1.2.1
Multiply √22 by 12.
√64+√22⋅2
Step 7.1.2.2
Multiply 2 by 2.
√64+√24
√64+√24
√64+√24
Step 7.2
Combine the numerators over the common denominator.
√6+√24
√6+√24
Step 8
The result can be shown in multiple forms.
Exact Form:
√6+√24
Decimal Form:
0.96592582…