Enter a problem...
Precalculus Examples
f(x)=x2-8x+16f(x)=x2−8x+16
Step 1
Step 1.1
Complete the square for x2-8x+16x2−8x+16.
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-8b=−8
c=16c=16
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-82⋅1d=−82⋅1
Step 1.1.3.2
Cancel the common factor of -8−8 and 22.
Step 1.1.3.2.1
Factor 22 out of -8−8.
d=2⋅-42⋅1d=2⋅−42⋅1
Step 1.1.3.2.2
Cancel the common factors.
Step 1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-42(1)d=2⋅−42(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2⋅-42⋅1
Step 1.1.3.2.2.3
Rewrite the expression.
d=-41
Step 1.1.3.2.2.4
Divide -4 by 1.
d=-4
d=-4
d=-4
d=-4
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=16-(-8)24⋅1
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Raise -8 to the power of 2.
e=16-644⋅1
Step 1.1.4.2.1.2
Multiply 4 by 1.
e=16-644
Step 1.1.4.2.1.3
Divide 64 by 4.
e=16-1⋅16
Step 1.1.4.2.1.4
Multiply -1 by 16.
e=16-16
e=16-16
Step 1.1.4.2.2
Subtract 16 from 16.
e=0
e=0
e=0
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x-4)2+0.
(x-4)2+0
(x-4)2+0
Step 1.2
Set y equal to the new right side.
y=(x-4)2+0
y=(x-4)2+0
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=4
k=0
Step 3
Find the vertex (h,k).
(4,0)
Step 4
