Precalculus Examples

Find the Vertex f(x)=x^2+4x-5
f(x)=x2+4x-5f(x)=x2+4x5
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Complete the square for x2+4x-5x2+4x5.
Tap for more steps...
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=4b=4
c=-5c=5
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=421d=421
Step 1.1.3.2
Cancel the common factor of 44 and 22.
Tap for more steps...
Step 1.1.3.2.1
Factor 22 out of 44.
d=2221d=2221
Step 1.1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.2.2.1
Factor 22 out of 2121.
d=222(1)d=222(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2221
Step 1.1.3.2.2.3
Rewrite the expression.
d=21
Step 1.1.3.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-5-4241
Step 1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.4.2.1.1
Cancel the common factor of 42 and 4.
Tap for more steps...
Step 1.1.4.2.1.1.1
Factor 4 out of 42.
e=-5-4441
Step 1.1.4.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.4.2.1.1.2.1
Factor 4 out of 41.
e=-5-444(1)
Step 1.1.4.2.1.1.2.2
Cancel the common factor.
e=-5-4441
Step 1.1.4.2.1.1.2.3
Rewrite the expression.
e=-5-41
Step 1.1.4.2.1.1.2.4
Divide 4 by 1.
e=-5-14
e=-5-14
e=-5-14
Step 1.1.4.2.1.2
Multiply -1 by 4.
e=-5-4
e=-5-4
Step 1.1.4.2.2
Subtract 4 from -5.
e=-9
e=-9
e=-9
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x+2)2-9.
(x+2)2-9
(x+2)2-9
Step 1.2
Set y equal to the new right side.
y=(x+2)2-9
y=(x+2)2-9
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=-2
k=-9
Step 3
Find the vertex (h,k).
(-2,-9)
Step 4
 [x2  12  π  xdx ]