Enter a problem...
Precalculus Examples
f(x)=x2+4x-5f(x)=x2+4x−5
Step 1
Step 1.1
Complete the square for x2+4x-5x2+4x−5.
Step 1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=4b=4
c=-5c=−5
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=42⋅1d=42⋅1
Step 1.1.3.2
Cancel the common factor of 44 and 22.
Step 1.1.3.2.1
Factor 22 out of 44.
d=2⋅22⋅1d=2⋅22⋅1
Step 1.1.3.2.2
Cancel the common factors.
Step 1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅22(1)d=2⋅22(1)
Step 1.1.3.2.2.2
Cancel the common factor.
d=2⋅22⋅1
Step 1.1.3.2.2.3
Rewrite the expression.
d=21
Step 1.1.3.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-5-424⋅1
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Cancel the common factor of 42 and 4.
Step 1.1.4.2.1.1.1
Factor 4 out of 42.
e=-5-4⋅44⋅1
Step 1.1.4.2.1.1.2
Cancel the common factors.
Step 1.1.4.2.1.1.2.1
Factor 4 out of 4⋅1.
e=-5-4⋅44(1)
Step 1.1.4.2.1.1.2.2
Cancel the common factor.
e=-5-4⋅44⋅1
Step 1.1.4.2.1.1.2.3
Rewrite the expression.
e=-5-41
Step 1.1.4.2.1.1.2.4
Divide 4 by 1.
e=-5-1⋅4
e=-5-1⋅4
e=-5-1⋅4
Step 1.1.4.2.1.2
Multiply -1 by 4.
e=-5-4
e=-5-4
Step 1.1.4.2.2
Subtract 4 from -5.
e=-9
e=-9
e=-9
Step 1.1.5
Substitute the values of a, d, and e into the vertex form (x+2)2-9.
(x+2)2-9
(x+2)2-9
Step 1.2
Set y equal to the new right side.
y=(x+2)2-9
y=(x+2)2-9
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=-2
k=-9
Step 3
Find the vertex (h,k).
(-2,-9)
Step 4