Precalculus Examples

Find the Inverse f(x)=x-5
f(x)=x-5f(x)=x5
Step 1
Write f(x)=x-5f(x)=x5 as an equation.
y=x-5y=x5
Step 2
Interchange the variables.
x=y-5x=y5
Step 3
Solve for yy.
Tap for more steps...
Step 3.1
Rewrite the equation as y-5=xy5=x.
y-5=xy5=x
Step 3.2
Add 55 to both sides of the equation.
y=x+5y=x+5
y=x+5y=x+5
Step 4
Replace yy with f-1(x)f1(x) to show the final answer.
f-1(x)=x+5f1(x)=x+5
Step 5
Verify if f-1(x)=x+5f1(x)=x+5 is the inverse of f(x)=x-5f(x)=x5.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=xf1(f(x))=x and f(f-1(x))=xf(f1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(x-5) by substituting in the value of f into f-1.
f-1(x-5)=(x-5)+5
Step 5.2.3
Combine the opposite terms in (x-5)+5.
Tap for more steps...
Step 5.2.3.1
Add -5 and 5.
f-1(x-5)=x+0
Step 5.2.3.2
Add x and 0.
f-1(x-5)=x
f-1(x-5)=x
f-1(x-5)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(x+5) by substituting in the value of f-1 into f.
f(x+5)=(x+5)-5
Step 5.3.3
Combine the opposite terms in (x+5)-5.
Tap for more steps...
Step 5.3.3.1
Subtract 5 from 5.
f(x+5)=x+0
Step 5.3.3.2
Add x and 0.
f(x+5)=x
f(x+5)=x
f(x+5)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x+5 is the inverse of f(x)=x-5.
f-1(x)=x+5
f-1(x)=x+5
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]