Precalculus Examples

Find the Inverse f(x)=6x^3-3
f(x)=6x3-3f(x)=6x33
Step 1
Write f(x)=6x3-3f(x)=6x33 as an equation.
y=6x3-3y=6x33
Step 2
Interchange the variables.
x=6y3-3x=6y33
Step 3
Solve for yy.
Tap for more steps...
Step 3.1
Rewrite the equation as 6y3-3=x6y33=x.
6y3-3=x6y33=x
Step 3.2
Add 33 to both sides of the equation.
6y3=x+36y3=x+3
Step 3.3
Divide each term in 6y3=x+36y3=x+3 by 66 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in 6y3=x+36y3=x+3 by 66.
6y36=x6+366y36=x6+36
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 66.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
6y36=x6+36
Step 3.3.2.1.2
Divide y3 by 1.
y3=x6+36
y3=x6+36
y3=x6+36
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Cancel the common factor of 3 and 6.
Tap for more steps...
Step 3.3.3.1.1
Factor 3 out of 3.
y3=x6+3(1)6
Step 3.3.3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.3.3.1.2.1
Factor 3 out of 6.
y3=x6+3132
Step 3.3.3.1.2.2
Cancel the common factor.
y3=x6+3132
Step 3.3.3.1.2.3
Rewrite the expression.
y3=x6+12
y3=x6+12
y3=x6+12
y3=x6+12
y3=x6+12
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=3x6+12
Step 3.5
Simplify 3x6+12.
Tap for more steps...
Step 3.5.1
To write 12 as a fraction with a common denominator, multiply by 33.
y=3x6+1233
Step 3.5.2
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.5.2.1
Multiply 12 by 33.
y=3x6+323
Step 3.5.2.2
Multiply 2 by 3.
y=3x6+36
y=3x6+36
Step 3.5.3
Combine the numerators over the common denominator.
y=3x+36
Step 3.5.4
Rewrite 3x+36 as 3x+336.
y=3x+336
Step 3.5.5
Multiply 3x+336 by 362362.
y=3x+336362362
Step 3.5.6
Combine and simplify the denominator.
Tap for more steps...
Step 3.5.6.1
Multiply 3x+336 by 362362.
y=3x+336236362
Step 3.5.6.2
Raise 36 to the power of 1.
y=3x+3362361362
Step 3.5.6.3
Use the power rule aman=am+n to combine exponents.
y=3x+3362361+2
Step 3.5.6.4
Add 1 and 2.
y=3x+3362363
Step 3.5.6.5
Rewrite 363 as 6.
Tap for more steps...
Step 3.5.6.5.1
Use nax=axn to rewrite 36 as 613.
y=3x+3362(613)3
Step 3.5.6.5.2
Apply the power rule and multiply exponents, (am)n=amn.
y=3x+33626133
Step 3.5.6.5.3
Combine 13 and 3.
y=3x+3362633
Step 3.5.6.5.4
Cancel the common factor of 3.
Tap for more steps...
Step 3.5.6.5.4.1
Cancel the common factor.
y=3x+3362633
Step 3.5.6.5.4.2
Rewrite the expression.
y=3x+336261
y=3x+336261
Step 3.5.6.5.5
Evaluate the exponent.
y=3x+33626
y=3x+33626
y=3x+33626
Step 3.5.7
Simplify the numerator.
Tap for more steps...
Step 3.5.7.1
Rewrite 362 as 362.
y=3x+33626
Step 3.5.7.2
Raise 6 to the power of 2.
y=3x+33366
y=3x+33366
Step 3.5.8
Simplify with factoring out.
Tap for more steps...
Step 3.5.8.1
Combine using the product rule for radicals.
y=3(x+3)366
Step 3.5.8.2
Reorder factors in 3(x+3)366.
y=336(x+3)6
y=336(x+3)6
y=336(x+3)6
y=336(x+3)6
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=336(x+3)6
Step 5
Verify if f-1(x)=336(x+3)6 is the inverse of f(x)=6x3-3.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(6x3-3) by substituting in the value of f into f-1.
f-1(6x3-3)=336((6x3-3)+3)6
Step 5.2.3
Simplify the numerator.
Tap for more steps...
Step 5.2.3.1
Add -3 and 3.
f-1(6x3-3)=336(6x3+0)6
Step 5.2.3.2
Add 6x3 and 0.
f-1(6x3-3)=336(6x3)6
Step 5.2.3.3
Multiply 36 by 6.
f-1(6x3-3)=3216x36
Step 5.2.3.4
Rewrite 216x3 as (6x)3.
f-1(6x3-3)=3(6x)36
Step 5.2.3.5
Pull terms out from under the radical, assuming real numbers.
f-1(6x3-3)=6x6
f-1(6x3-3)=6x6
Step 5.2.4
Cancel the common factor of 6.
Tap for more steps...
Step 5.2.4.1
Cancel the common factor.
f-1(6x3-3)=6x6
Step 5.2.4.2
Divide x by 1.
f-1(6x3-3)=x
f-1(6x3-3)=x
f-1(6x3-3)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(336(x+3)6) by substituting in the value of f-1 into f.
f(336(x+3)6)=6(336(x+3)6)3-3
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Apply the product rule to 336(x+3)6.
f(336(x+3)6)=6(336(x+3)363)-3
Step 5.3.3.2
Simplify the numerator.
Tap for more steps...
Step 5.3.3.2.1
Rewrite 336(x+3)3 as 36(x+3).
Tap for more steps...
Step 5.3.3.2.1.1
Use nax=axn to rewrite 336(x+3) as (36(x+3))13.
f(336(x+3)6)=6(((36(x+3))13)363)-3
Step 5.3.3.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(336(x+3)6)=6((36(x+3))13363)-3
Step 5.3.3.2.1.3
Combine 13 and 3.
f(336(x+3)6)=6((36(x+3))3363)-3
Step 5.3.3.2.1.4
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.3.2.1.4.1
Cancel the common factor.
f(336(x+3)6)=6((36(x+3))3363)-3
Step 5.3.3.2.1.4.2
Rewrite the expression.
f(336(x+3)6)=6(36(x+3)63)-3
f(336(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.2.1.5
Simplify.
f(336(x+3)6)=6(36(x+3)63)-3
f(336(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.2.2
Apply the distributive property.
f(336(x+3)6)=6(36x+36363)-3
Step 5.3.3.2.3
Multiply 36 by 3.
f(336(x+3)6)=6(36x+10863)-3
Step 5.3.3.2.4
Factor 36 out of 36x+108.
Tap for more steps...
Step 5.3.3.2.4.1
Factor 36 out of 36x.
f(336(x+3)6)=6(36(x)+10863)-3
Step 5.3.3.2.4.2
Factor 36 out of 108.
f(336(x+3)6)=6(36x+36363)-3
Step 5.3.3.2.4.3
Factor 36 out of 36x+363.
f(336(x+3)6)=6(36(x+3)63)-3
f(336(x+3)6)=6(36(x+3)63)-3
f(336(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.3
Raise 6 to the power of 3.
f(336(x+3)6)=6(36(x+3)216)-3
Step 5.3.3.4
Cancel the common factor of 6.
Tap for more steps...
Step 5.3.3.4.1
Factor 6 out of 216.
f(336(x+3)6)=6(36(x+3)6(36))-3
Step 5.3.3.4.2
Cancel the common factor.
f(336(x+3)6)=6(36(x+3)636)-3
Step 5.3.3.4.3
Rewrite the expression.
f(336(x+3)6)=36(x+3)36-3
f(336(x+3)6)=36(x+3)36-3
Step 5.3.3.5
Cancel the common factor of 36.
Tap for more steps...
Step 5.3.3.5.1
Cancel the common factor.
f(336(x+3)6)=36(x+3)36-3
Step 5.3.3.5.2
Divide x+3 by 1.
f(336(x+3)6)=x+3-3
f(336(x+3)6)=x+3-3
f(336(x+3)6)=x+3-3
Step 5.3.4
Combine the opposite terms in x+3-3.
Tap for more steps...
Step 5.3.4.1
Subtract 3 from 3.
f(336(x+3)6)=x+0
Step 5.3.4.2
Add x and 0.
f(336(x+3)6)=x
f(336(x+3)6)=x
f(336(x+3)6)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=336(x+3)6 is the inverse of f(x)=6x3-3.
f-1(x)=336(x+3)6
f-1(x)=336(x+3)6
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]