Enter a problem...
Precalculus Examples
f(x)=6x3-3f(x)=6x3−3
Step 1
Write f(x)=6x3-3f(x)=6x3−3 as an equation.
y=6x3-3y=6x3−3
Step 2
Interchange the variables.
x=6y3-3x=6y3−3
Step 3
Step 3.1
Rewrite the equation as 6y3-3=x6y3−3=x.
6y3-3=x6y3−3=x
Step 3.2
Add 33 to both sides of the equation.
6y3=x+36y3=x+3
Step 3.3
Divide each term in 6y3=x+36y3=x+3 by 66 and simplify.
Step 3.3.1
Divide each term in 6y3=x+36y3=x+3 by 66.
6y36=x6+366y36=x6+36
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 66.
Step 3.3.2.1.1
Cancel the common factor.
6y36=x6+36
Step 3.3.2.1.2
Divide y3 by 1.
y3=x6+36
y3=x6+36
y3=x6+36
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Cancel the common factor of 3 and 6.
Step 3.3.3.1.1
Factor 3 out of 3.
y3=x6+3(1)6
Step 3.3.3.1.2
Cancel the common factors.
Step 3.3.3.1.2.1
Factor 3 out of 6.
y3=x6+3⋅13⋅2
Step 3.3.3.1.2.2
Cancel the common factor.
y3=x6+3⋅13⋅2
Step 3.3.3.1.2.3
Rewrite the expression.
y3=x6+12
y3=x6+12
y3=x6+12
y3=x6+12
y3=x6+12
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=3√x6+12
Step 3.5
Simplify 3√x6+12.
Step 3.5.1
To write 12 as a fraction with a common denominator, multiply by 33.
y=3√x6+12⋅33
Step 3.5.2
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 3.5.2.1
Multiply 12 by 33.
y=3√x6+32⋅3
Step 3.5.2.2
Multiply 2 by 3.
y=3√x6+36
y=3√x6+36
Step 3.5.3
Combine the numerators over the common denominator.
y=3√x+36
Step 3.5.4
Rewrite 3√x+36 as 3√x+33√6.
y=3√x+33√6
Step 3.5.5
Multiply 3√x+33√6 by 3√623√62.
y=3√x+33√6⋅3√623√62
Step 3.5.6
Combine and simplify the denominator.
Step 3.5.6.1
Multiply 3√x+33√6 by 3√623√62.
y=3√x+33√623√63√62
Step 3.5.6.2
Raise 3√6 to the power of 1.
y=3√x+33√623√613√62
Step 3.5.6.3
Use the power rule aman=am+n to combine exponents.
y=3√x+33√623√61+2
Step 3.5.6.4
Add 1 and 2.
y=3√x+33√623√63
Step 3.5.6.5
Rewrite 3√63 as 6.
Step 3.5.6.5.1
Use n√ax=axn to rewrite 3√6 as 613.
y=3√x+33√62(613)3
Step 3.5.6.5.2
Apply the power rule and multiply exponents, (am)n=amn.
y=3√x+33√62613⋅3
Step 3.5.6.5.3
Combine 13 and 3.
y=3√x+33√62633
Step 3.5.6.5.4
Cancel the common factor of 3.
Step 3.5.6.5.4.1
Cancel the common factor.
y=3√x+33√62633
Step 3.5.6.5.4.2
Rewrite the expression.
y=3√x+33√6261
y=3√x+33√6261
Step 3.5.6.5.5
Evaluate the exponent.
y=3√x+33√626
y=3√x+33√626
y=3√x+33√626
Step 3.5.7
Simplify the numerator.
Step 3.5.7.1
Rewrite 3√62 as 3√62.
y=3√x+33√626
Step 3.5.7.2
Raise 6 to the power of 2.
y=3√x+33√366
y=3√x+33√366
Step 3.5.8
Simplify with factoring out.
Step 3.5.8.1
Combine using the product rule for radicals.
y=3√(x+3)⋅366
Step 3.5.8.2
Reorder factors in 3√(x+3)⋅366.
y=3√36(x+3)6
y=3√36(x+3)6
y=3√36(x+3)6
y=3√36(x+3)6
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=3√36(x+3)6
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(6x3-3) by substituting in the value of f into f-1.
f-1(6x3-3)=3√36((6x3-3)+3)6
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Add -3 and 3.
f-1(6x3-3)=3√36(6x3+0)6
Step 5.2.3.2
Add 6x3 and 0.
f-1(6x3-3)=3√36⋅(6x3)6
Step 5.2.3.3
Multiply 36 by 6.
f-1(6x3-3)=3√216x36
Step 5.2.3.4
Rewrite 216x3 as (6x)3.
f-1(6x3-3)=3√(6x)36
Step 5.2.3.5
Pull terms out from under the radical, assuming real numbers.
f-1(6x3-3)=6x6
f-1(6x3-3)=6x6
Step 5.2.4
Cancel the common factor of 6.
Step 5.2.4.1
Cancel the common factor.
f-1(6x3-3)=6x6
Step 5.2.4.2
Divide x by 1.
f-1(6x3-3)=x
f-1(6x3-3)=x
f-1(6x3-3)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(3√36(x+3)6) by substituting in the value of f-1 into f.
f(3√36(x+3)6)=6(3√36(x+3)6)3-3
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the product rule to 3√36(x+3)6.
f(3√36(x+3)6)=6(3√36(x+3)363)-3
Step 5.3.3.2
Simplify the numerator.
Step 5.3.3.2.1
Rewrite 3√36(x+3)3 as 36(x+3).
Step 5.3.3.2.1.1
Use n√ax=axn to rewrite 3√36(x+3) as (36(x+3))13.
f(3√36(x+3)6)=6(((36(x+3))13)363)-3
Step 5.3.3.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f(3√36(x+3)6)=6((36(x+3))13⋅363)-3
Step 5.3.3.2.1.3
Combine 13 and 3.
f(3√36(x+3)6)=6((36(x+3))3363)-3
Step 5.3.3.2.1.4
Cancel the common factor of 3.
Step 5.3.3.2.1.4.1
Cancel the common factor.
f(3√36(x+3)6)=6((36(x+3))3363)-3
Step 5.3.3.2.1.4.2
Rewrite the expression.
f(3√36(x+3)6)=6(36(x+3)63)-3
f(3√36(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.2.1.5
Simplify.
f(3√36(x+3)6)=6(36(x+3)63)-3
f(3√36(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.2.2
Apply the distributive property.
f(3√36(x+3)6)=6(36x+36⋅363)-3
Step 5.3.3.2.3
Multiply 36 by 3.
f(3√36(x+3)6)=6(36x+10863)-3
Step 5.3.3.2.4
Factor 36 out of 36x+108.
Step 5.3.3.2.4.1
Factor 36 out of 36x.
f(3√36(x+3)6)=6(36(x)+10863)-3
Step 5.3.3.2.4.2
Factor 36 out of 108.
f(3√36(x+3)6)=6(36x+36⋅363)-3
Step 5.3.3.2.4.3
Factor 36 out of 36x+36⋅3.
f(3√36(x+3)6)=6(36(x+3)63)-3
f(3√36(x+3)6)=6(36(x+3)63)-3
f(3√36(x+3)6)=6(36(x+3)63)-3
Step 5.3.3.3
Raise 6 to the power of 3.
f(3√36(x+3)6)=6(36(x+3)216)-3
Step 5.3.3.4
Cancel the common factor of 6.
Step 5.3.3.4.1
Factor 6 out of 216.
f(3√36(x+3)6)=6(36(x+3)6(36))-3
Step 5.3.3.4.2
Cancel the common factor.
f(3√36(x+3)6)=6(36(x+3)6⋅36)-3
Step 5.3.3.4.3
Rewrite the expression.
f(3√36(x+3)6)=36(x+3)36-3
f(3√36(x+3)6)=36(x+3)36-3
Step 5.3.3.5
Cancel the common factor of 36.
Step 5.3.3.5.1
Cancel the common factor.
f(3√36(x+3)6)=36(x+3)36-3
Step 5.3.3.5.2
Divide x+3 by 1.
f(3√36(x+3)6)=x+3-3
f(3√36(x+3)6)=x+3-3
f(3√36(x+3)6)=x+3-3
Step 5.3.4
Combine the opposite terms in x+3-3.
Step 5.3.4.1
Subtract 3 from 3.
f(3√36(x+3)6)=x+0
Step 5.3.4.2
Add x and 0.
f(3√36(x+3)6)=x
f(3√36(x+3)6)=x
f(3√36(x+3)6)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=3√36(x+3)6 is the inverse of f(x)=6x3-3.
f-1(x)=3√36(x+3)6
f-1(x)=3√36(x+3)6