Precalculus Examples

Find the Roots (Zeros) cos(2x)-cos(x)=0
cos(2x)-cos(x)=0cos(2x)cos(x)=0
Step 1
Use the double-angle identity to transform cos(2x)cos(2x) to 2cos2(x)-12cos2(x)1.
2cos2(x)-1-cos(x)=02cos2(x)1cos(x)=0
Step 2
Factor by grouping.
Tap for more steps...
Step 2.1
Reorder terms.
2cos2(x)-cos(x)-1=02cos2(x)cos(x)1=0
Step 2.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=2-1=-2ac=21=2 and whose sum is b=-1b=1.
Tap for more steps...
Step 2.2.1
Factor -11 out of -cos(x)cos(x).
2cos2(x)-cos(x)-1=02cos2(x)cos(x)1=0
Step 2.2.2
Rewrite -11 as 11 plus -22
2cos2(x)+(1-2)cos(x)-1=02cos2(x)+(12)cos(x)1=0
Step 2.2.3
Apply the distributive property.
2cos2(x)+1cos(x)-2cos(x)-1=02cos2(x)+1cos(x)2cos(x)1=0
Step 2.2.4
Multiply cos(x)cos(x) by 11.
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)2cos(x)1=0
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)2cos(x)1=0
Step 2.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.3.1
Group the first two terms and the last two terms.
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)2cos(x)1=0
Step 2.3.2
Factor out the greatest common factor (GCF) from each group.
cos(x)(2cos(x)+1)-(2cos(x)+1)=0cos(x)(2cos(x)+1)(2cos(x)+1)=0
cos(x)(2cos(x)+1)-(2cos(x)+1)=0cos(x)(2cos(x)+1)(2cos(x)+1)=0
Step 2.4
Factor the polynomial by factoring out the greatest common factor, 2cos(x)+12cos(x)+1.
(2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)1)=0
(2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)1)=0
Step 3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
2cos(x)+1=02cos(x)+1=0
cos(x)-1=0cos(x)1=0
Step 4
Set 2cos(x)+12cos(x)+1 equal to 00 and solve for xx.
Tap for more steps...
Step 4.1
Set 2cos(x)+12cos(x)+1 equal to 00.
2cos(x)+1=02cos(x)+1=0
Step 4.2
Solve 2cos(x)+1=02cos(x)+1=0 for xx.
Tap for more steps...
Step 4.2.1
Subtract 11 from both sides of the equation.
2cos(x)=-12cos(x)=1
Step 4.2.2
Divide each term in 2cos(x)=-12cos(x)=1 by 22 and simplify.
Tap for more steps...
Step 4.2.2.1
Divide each term in 2cos(x)=-12cos(x)=1 by 22.
2cos(x)2=-122cos(x)2=12
Step 4.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.2.2.1.1
Cancel the common factor.
2cos(x)2=-122cos(x)2=12
Step 4.2.2.2.1.2
Divide cos(x)cos(x) by 11.
cos(x)=-12cos(x)=12
cos(x)=-12cos(x)=12
cos(x)=-12cos(x)=12
Step 4.2.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.2.3.1
Move the negative in front of the fraction.
cos(x)=-12cos(x)=12
cos(x)=-12cos(x)=12
cos(x)=-12cos(x)=12
Step 4.2.3
Take the inverse cosine of both sides of the equation to extract xx from inside the cosine.
x=arccos(-12)x=arccos(12)
Step 4.2.4
Simplify the right side.
Tap for more steps...
Step 4.2.4.1
The exact value of arccos(-12)arccos(12) is 2π32π3.
x=2π3x=2π3
x=2π3x=2π3
Step 4.2.5
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π2π to find the solution in the third quadrant.
x=2π-2π3x=2π2π3
Step 4.2.6
Simplify 2π-2π32π2π3.
Tap for more steps...
Step 4.2.6.1
To write 2π2π as a fraction with a common denominator, multiply by 3333.
x=2π33-2π3x=2π332π3
Step 4.2.6.2
Combine fractions.
Tap for more steps...
Step 4.2.6.2.1
Combine 2π2π and 3333.
x=2π33-2π3x=2π332π3
Step 4.2.6.2.2
Combine the numerators over the common denominator.
x=2π3-2π3x=2π32π3
x=2π3-2π3x=2π32π3
Step 4.2.6.3
Simplify the numerator.
Tap for more steps...
Step 4.2.6.3.1
Multiply 33 by 22.
x=6π-2π3x=6π2π3
Step 4.2.6.3.2
Subtract 2π2π from 6π6π.
x=4π3x=4π3
x=4π3x=4π3
x=4π3x=4π3
Step 4.2.7
Find the period of cos(x)cos(x).
Tap for more steps...
Step 4.2.7.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 4.2.7.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 4.2.7.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 4.2.7.4
Divide 2π2π by 11.
2π2π
2π2π
Step 4.2.8
The period of the cos(x)cos(x) function is 2π2π so values will repeat every 2π2π radians in both directions.
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
Step 5
Set cos(x)-1cos(x)1 equal to 00 and solve for xx.
Tap for more steps...
Step 5.1
Set cos(x)-1cos(x)1 equal to 00.
cos(x)-1=0cos(x)1=0
Step 5.2
Solve cos(x)-1=0cos(x)1=0 for xx.
Tap for more steps...
Step 5.2.1
Add 11 to both sides of the equation.
cos(x)=1cos(x)=1
Step 5.2.2
Take the inverse cosine of both sides of the equation to extract xx from inside the cosine.
x=arccos(1)x=arccos(1)
Step 5.2.3
Simplify the right side.
Tap for more steps...
Step 5.2.3.1
The exact value of arccos(1)arccos(1) is 00.
x=0x=0
x=0x=0
Step 5.2.4
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π2π to find the solution in the fourth quadrant.
x=2π-0x=2π0
Step 5.2.5
Subtract 00 from 2π2π.
x=2πx=2π
Step 5.2.6
Find the period of cos(x)cos(x).
Tap for more steps...
Step 5.2.6.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 5.2.6.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 5.2.6.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 5.2.6.4
Divide 2π2π by 11.
2π2π
2π2π
Step 5.2.7
The period of the cos(x)cos(x) function is 2π2π so values will repeat every 2π2π radians in both directions.
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
Step 6
The final solution is all the values that make (2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)1)=0 true.
x=2π3+2πn,4π3+2πn,2πn,2π+2πnx=2π3+2πn,4π3+2πn,2πn,2π+2πn, for any integer nn
Step 7
Consolidate the answers.
x=2πn3x=2πn3, for any integer nn
Step 8
 [x2  12  π  xdx ]  x2  12  π  xdx