Enter a problem...
Precalculus Examples
cos(2x)-cos(x)=0cos(2x)−cos(x)=0
Step 1
Use the double-angle identity to transform cos(2x)cos(2x) to 2cos2(x)-12cos2(x)−1.
2cos2(x)-1-cos(x)=02cos2(x)−1−cos(x)=0
Step 2
Step 2.1
Reorder terms.
2cos2(x)-cos(x)-1=02cos2(x)−cos(x)−1=0
Step 2.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=2⋅-1=-2a⋅c=2⋅−1=−2 and whose sum is b=-1b=−1.
Step 2.2.1
Factor -1−1 out of -cos(x)−cos(x).
2cos2(x)-cos(x)-1=02cos2(x)−cos(x)−1=0
Step 2.2.2
Rewrite -1−1 as 11 plus -2−2
2cos2(x)+(1-2)cos(x)-1=02cos2(x)+(1−2)cos(x)−1=0
Step 2.2.3
Apply the distributive property.
2cos2(x)+1cos(x)-2cos(x)-1=02cos2(x)+1cos(x)−2cos(x)−1=0
Step 2.2.4
Multiply cos(x)cos(x) by 11.
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)−2cos(x)−1=0
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)−2cos(x)−1=0
Step 2.3
Factor out the greatest common factor from each group.
Step 2.3.1
Group the first two terms and the last two terms.
2cos2(x)+cos(x)-2cos(x)-1=02cos2(x)+cos(x)−2cos(x)−1=0
Step 2.3.2
Factor out the greatest common factor (GCF) from each group.
cos(x)(2cos(x)+1)-(2cos(x)+1)=0cos(x)(2cos(x)+1)−(2cos(x)+1)=0
cos(x)(2cos(x)+1)-(2cos(x)+1)=0cos(x)(2cos(x)+1)−(2cos(x)+1)=0
Step 2.4
Factor the polynomial by factoring out the greatest common factor, 2cos(x)+12cos(x)+1.
(2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)−1)=0
(2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)−1)=0
Step 3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
2cos(x)+1=02cos(x)+1=0
cos(x)-1=0cos(x)−1=0
Step 4
Step 4.1
Set 2cos(x)+12cos(x)+1 equal to 00.
2cos(x)+1=02cos(x)+1=0
Step 4.2
Solve 2cos(x)+1=02cos(x)+1=0 for xx.
Step 4.2.1
Subtract 11 from both sides of the equation.
2cos(x)=-12cos(x)=−1
Step 4.2.2
Divide each term in 2cos(x)=-12cos(x)=−1 by 22 and simplify.
Step 4.2.2.1
Divide each term in 2cos(x)=-12cos(x)=−1 by 22.
2cos(x)2=-122cos(x)2=−12
Step 4.2.2.2
Simplify the left side.
Step 4.2.2.2.1
Cancel the common factor of 22.
Step 4.2.2.2.1.1
Cancel the common factor.
2cos(x)2=-122cos(x)2=−12
Step 4.2.2.2.1.2
Divide cos(x)cos(x) by 11.
cos(x)=-12cos(x)=−12
cos(x)=-12cos(x)=−12
cos(x)=-12cos(x)=−12
Step 4.2.2.3
Simplify the right side.
Step 4.2.2.3.1
Move the negative in front of the fraction.
cos(x)=-12cos(x)=−12
cos(x)=-12cos(x)=−12
cos(x)=-12cos(x)=−12
Step 4.2.3
Take the inverse cosine of both sides of the equation to extract xx from inside the cosine.
x=arccos(-12)x=arccos(−12)
Step 4.2.4
Simplify the right side.
Step 4.2.4.1
The exact value of arccos(-12)arccos(−12) is 2π32π3.
x=2π3x=2π3
x=2π3x=2π3
Step 4.2.5
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π2π to find the solution in the third quadrant.
x=2π-2π3x=2π−2π3
Step 4.2.6
Simplify 2π-2π32π−2π3.
Step 4.2.6.1
To write 2π2π as a fraction with a common denominator, multiply by 3333.
x=2π⋅33-2π3x=2π⋅33−2π3
Step 4.2.6.2
Combine fractions.
Step 4.2.6.2.1
Combine 2π2π and 3333.
x=2π⋅33-2π3x=2π⋅33−2π3
Step 4.2.6.2.2
Combine the numerators over the common denominator.
x=2π⋅3-2π3x=2π⋅3−2π3
x=2π⋅3-2π3x=2π⋅3−2π3
Step 4.2.6.3
Simplify the numerator.
Step 4.2.6.3.1
Multiply 33 by 22.
x=6π-2π3x=6π−2π3
Step 4.2.6.3.2
Subtract 2π2π from 6π6π.
x=4π3x=4π3
x=4π3x=4π3
x=4π3x=4π3
Step 4.2.7
Find the period of cos(x)cos(x).
Step 4.2.7.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 4.2.7.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 4.2.7.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 4.2.7.4
Divide 2π2π by 11.
2π2π
2π2π
Step 4.2.8
The period of the cos(x)cos(x) function is 2π2π so values will repeat every 2π2π radians in both directions.
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
x=2π3+2πn,4π3+2πnx=2π3+2πn,4π3+2πn, for any integer nn
Step 5
Step 5.1
Set cos(x)-1cos(x)−1 equal to 00.
cos(x)-1=0cos(x)−1=0
Step 5.2
Solve cos(x)-1=0cos(x)−1=0 for xx.
Step 5.2.1
Add 11 to both sides of the equation.
cos(x)=1cos(x)=1
Step 5.2.2
Take the inverse cosine of both sides of the equation to extract xx from inside the cosine.
x=arccos(1)x=arccos(1)
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
The exact value of arccos(1)arccos(1) is 00.
x=0x=0
x=0x=0
Step 5.2.4
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π2π to find the solution in the fourth quadrant.
x=2π-0x=2π−0
Step 5.2.5
Subtract 00 from 2π2π.
x=2πx=2π
Step 5.2.6
Find the period of cos(x)cos(x).
Step 5.2.6.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 5.2.6.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 5.2.6.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 5.2.6.4
Divide 2π2π by 11.
2π2π
2π2π
Step 5.2.7
The period of the cos(x)cos(x) function is 2π2π so values will repeat every 2π2π radians in both directions.
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
x=2πn,2π+2πnx=2πn,2π+2πn, for any integer nn
Step 6
The final solution is all the values that make (2cos(x)+1)(cos(x)-1)=0(2cos(x)+1)(cos(x)−1)=0 true.
x=2π3+2πn,4π3+2πn,2πn,2π+2πnx=2π3+2πn,4π3+2πn,2πn,2π+2πn, for any integer nn
Step 7
Consolidate the answers.
x=2πn3x=2πn3, for any integer nn
Step 8