Enter a problem...
Precalculus Examples
log(3x)=log(5)+log(x-2)log(3x)=log(5)+log(x−2)
Step 1
Step 1.1
Simplify log(5)+log(x-2)log(5)+log(x−2).
Step 1.1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy)logb(x)+logb(y)=logb(xy).
log(3x)=log(5(x-2))log(3x)=log(5(x−2))
Step 1.1.2
Apply the distributive property.
log(3x)=log(5x+5⋅-2)log(3x)=log(5x+5⋅−2)
Step 1.1.3
Multiply 55 by -2−2.
log(3x)=log(5x-10)log(3x)=log(5x−10)
log(3x)=log(5x-10)log(3x)=log(5x−10)
log(3x)=log(5x-10)log(3x)=log(5x−10)
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
3x=5x-103x=5x−10
Step 3
Step 3.1
Move all terms containing xx to the left side of the equation.
Step 3.1.1
Subtract 5x5x from both sides of the equation.
3x-5x=-103x−5x=−10
Step 3.1.2
Subtract 5x5x from 3x3x.
-2x=-10−2x=−10
-2x=-10−2x=−10
Step 3.2
Divide each term in -2x=-10−2x=−10 by -2−2 and simplify.
Step 3.2.1
Divide each term in -2x=-10−2x=−10 by -2−2.
-2x-2=-10-2−2x−2=−10−2
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -2−2.
Step 3.2.2.1.1
Cancel the common factor.
-2x-2=-10-2
Step 3.2.2.1.2
Divide x by 1.
x=-10-2
x=-10-2
x=-10-2
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide -10 by -2.
x=5
x=5
x=5
x=5