Precalculus Examples

Solve for x log of 8x- log of 1+ square root of x=2
log(8x)-log(1+x)=2log(8x)log(1+x)=2
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
log(8x1+x)=2log(8x1+x)=2
Step 1.2
Multiply 8x1+x8x1+x by 1-x1-x1x1x.
log(8x1+x1-x1-x)=2log(8x1+x1x1x)=2
Step 1.3
Multiply 8x1+x8x1+x by 1-x1-x1x1x.
log(8x(1-x)(1+x)(1-x))=2log(8x(1x)(1+x)(1x))=2
Step 1.4
Expand the denominator using the FOIL method.
log(8x(1-x)1-x+x-x2)=2log(8x(1x)1x+xx2)=2
Step 1.5
Simplify.
log(8x(1-x)-x+1)=2log(8x(1x)x+1)=2
log(8x(1-x)-x+1)=2log(8x(1x)x+1)=2
Step 2
Rewrite log(8x(1-x)-x+1)=2log(8x(1x)x+1)=2 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and bb11, then logb(x)=ylogb(x)=y is equivalent to by=x.
102=8x(1-x)-x+1
Step 3
Cross multiply to remove the fraction.
8x(1-x)=102(-x+1)
Step 4
Simplify 102(-x+1).
Tap for more steps...
Step 4.1
Raise 10 to the power of 2.
8x(1-x)=100(-x+1)
Step 4.2
Apply the distributive property.
8x(1-x)=100(-x)+1001
Step 4.3
Multiply.
Tap for more steps...
Step 4.3.1
Multiply -1 by 100.
8x(1-x)=-100x+1001
Step 4.3.2
Multiply 100 by 1.
8x(1-x)=-100x+100
8x(1-x)=-100x+100
8x(1-x)=-100x+100
Step 5
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 5.1
Add 100x to both sides of the equation.
8x(1-x)+100x=100
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Apply the distributive property.
8x1+8x(-x)+100x=100
Step 5.2.2
Multiply 8 by 1.
8x+8x(-x)+100x=100
Step 5.2.3
Multiply -1 by 8.
8x-8xx+100x=100
8x-8xx+100x=100
Step 5.3
Add 8x and 100x.
-8xx+108x=100
-8xx+108x=100
Step 6
Factor 4x out of -8xx+108x.
Tap for more steps...
Step 6.1
Factor 4x out of -8xx.
4x(-2x)+108x=100
Step 6.2
Factor 4x out of 108x.
4x(-2x)+4x(27)=100
Step 6.3
Factor 4x out of 4x(-2x)+4x(27).
4x(-2x+27)=100
4x(-2x+27)=100
Step 7
Divide each term in 4x(-2x+27)=100 by 4 and simplify.
Tap for more steps...
Step 7.1
Divide each term in 4x(-2x+27)=100 by 4.
4x(-2x+27)4=1004
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of 4.
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
4x(-2x+27)4=1004
Step 7.2.1.2
Divide x(-2x+27) by 1.
x(-2x+27)=1004
x(-2x+27)=1004
Step 7.2.2
Apply the distributive property.
x(-2x)+x27=1004
Step 7.2.3
Reorder.
Tap for more steps...
Step 7.2.3.1
Rewrite using the commutative property of multiplication.
-2xx+x27=1004
Step 7.2.3.2
Move 27 to the left of x.
-2xx+27x=1004
-2xx+27x=1004
-2xx+27x=1004
Step 7.3
Simplify the right side.
Tap for more steps...
Step 7.3.1
Divide 100 by 4.
-2xx+27x=25
-2xx+27x=25
-2xx+27x=25
Step 8
Subtract 27x from both sides of the equation.
-2xx=25-27x
Step 9
To remove the radical on the left side of the equation, square both sides of the equation.
(-2xx)2=(25-27x)2
Step 10
Simplify each side of the equation.
Tap for more steps...
Step 10.1
Use nax=axn to rewrite x as x12.
(-2xx12)2=(25-27x)2
Step 10.2
Simplify the left side.
Tap for more steps...
Step 10.2.1
Simplify (-2xx12)2.
Tap for more steps...
Step 10.2.1.1
Multiply x by x12 by adding the exponents.
Tap for more steps...
Step 10.2.1.1.1
Move x12.
(-2(x12x))2=(25-27x)2
Step 10.2.1.1.2
Multiply x12 by x.
Tap for more steps...
Step 10.2.1.1.2.1
Raise x to the power of 1.
(-2(x12x1))2=(25-27x)2
Step 10.2.1.1.2.2
Use the power rule aman=am+n to combine exponents.
(-2x12+1)2=(25-27x)2
(-2x12+1)2=(25-27x)2
Step 10.2.1.1.3
Write 1 as a fraction with a common denominator.
(-2x12+22)2=(25-27x)2
Step 10.2.1.1.4
Combine the numerators over the common denominator.
(-2x1+22)2=(25-27x)2
Step 10.2.1.1.5
Add 1 and 2.
(-2x32)2=(25-27x)2
(-2x32)2=(25-27x)2
Step 10.2.1.2
Apply the product rule to -2x32.
(-2)2(x32)2=(25-27x)2
Step 10.2.1.3
Raise -2 to the power of 2.
4(x32)2=(25-27x)2
Step 10.2.1.4
Multiply the exponents in (x32)2.
Tap for more steps...
Step 10.2.1.4.1
Apply the power rule and multiply exponents, (am)n=amn.
4x322=(25-27x)2
Step 10.2.1.4.2
Cancel the common factor of 2.
Tap for more steps...
Step 10.2.1.4.2.1
Cancel the common factor.
4x322=(25-27x)2
Step 10.2.1.4.2.2
Rewrite the expression.
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
Step 10.3
Simplify the right side.
Tap for more steps...
Step 10.3.1
Simplify (25-27x)2.
Tap for more steps...
Step 10.3.1.1
Rewrite (25-27x)2 as (25-27x)(25-27x).
4x3=(25-27x)(25-27x)
Step 10.3.1.2
Expand (25-27x)(25-27x) using the FOIL Method.
Tap for more steps...
Step 10.3.1.2.1
Apply the distributive property.
4x3=25(25-27x)-27x(25-27x)
Step 10.3.1.2.2
Apply the distributive property.
4x3=2525+25(-27x)-27x(25-27x)
Step 10.3.1.2.3
Apply the distributive property.
4x3=2525+25(-27x)-27x25-27x(-27x)
4x3=2525+25(-27x)-27x25-27x(-27x)
Step 10.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 10.3.1.3.1
Simplify each term.
Tap for more steps...
Step 10.3.1.3.1.1
Multiply 25 by 25.
4x3=625+25(-27x)-27x25-27x(-27x)
Step 10.3.1.3.1.2
Multiply -27 by 25.
4x3=625-675x-27x25-27x(-27x)
Step 10.3.1.3.1.3
Multiply 25 by -27.
4x3=625-675x-675x-27x(-27x)
Step 10.3.1.3.1.4
Rewrite using the commutative property of multiplication.
4x3=625-675x-675x-27-27xx
Step 10.3.1.3.1.5
Multiply x by x by adding the exponents.
Tap for more steps...
Step 10.3.1.3.1.5.1
Move x.
4x3=625-675x-675x-27-27(xx)
Step 10.3.1.3.1.5.2
Multiply x by x.
4x3=625-675x-675x-27-27x2
4x3=625-675x-675x-27-27x2
Step 10.3.1.3.1.6
Multiply -27 by -27.
4x3=625-675x-675x+729x2
4x3=625-675x-675x+729x2
Step 10.3.1.3.2
Subtract 675x from -675x.
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
Step 11
Solve for x.
Tap for more steps...
Step 11.1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 11.1.1
Subtract 625 from both sides of the equation.
4x3-625=-1350x+729x2
Step 11.1.2
Add 1350x to both sides of the equation.
4x3-625+1350x=729x2
Step 11.1.3
Subtract 729x2 from both sides of the equation.
4x3-625+1350x-729x2=0
4x3-625+1350x-729x2=0
Step 11.2
Factor the left side of the equation.
Tap for more steps...
Step 11.2.1
Reorder terms.
4x3-729x2+1350x-625=0
Step 11.2.2
Factor 4x3-729x2+1350x-625 using the rational roots test.
Tap for more steps...
Step 11.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±625,±5,±125,±25
q=±1,±4,±2
Step 11.2.2.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±0.25,±0.5,±625,±156.25,±312.5,±5,±1.25,±2.5,±125,±31.25,±62.5,±25,±6.25,±12.5
Step 11.2.2.3
Substitute 1 and simplify the expression. In this case, the expression is equal to 0 so 1 is a root of the polynomial.
Tap for more steps...
Step 11.2.2.3.1
Substitute 1 into the polynomial.
413-72912+13501-625
Step 11.2.2.3.2
Raise 1 to the power of 3.
41-72912+13501-625
Step 11.2.2.3.3
Multiply 4 by 1.
4-72912+13501-625
Step 11.2.2.3.4
Raise 1 to the power of 2.
4-7291+13501-625
Step 11.2.2.3.5
Multiply -729 by 1.
4-729+13501-625
Step 11.2.2.3.6
Subtract 729 from 4.
-725+13501-625
Step 11.2.2.3.7
Multiply 1350 by 1.
-725+1350-625
Step 11.2.2.3.8
Add -725 and 1350.
625-625
Step 11.2.2.3.9
Subtract 625 from 625.
0
0
Step 11.2.2.4
Since 1 is a known root, divide the polynomial by x-1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
4x3-729x2+1350x-625x-1
Step 11.2.2.5
Divide 4x3-729x2+1350x-625 by x-1.
Tap for more steps...
Step 11.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x-14x3-729x2+1350x-625
Step 11.2.2.5.2
Divide the highest order term in the dividend 4x3 by the highest order term in divisor x.
4x2
x-14x3-729x2+1350x-625
Step 11.2.2.5.3
Multiply the new quotient term by the divisor.
4x2
x-14x3-729x2+1350x-625
+4x3-4x2
Step 11.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in 4x3-4x2
4x2
x-14x3-729x2+1350x-625
-4x3+4x2
Step 11.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2
Step 11.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
4x2
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
Step 11.2.2.5.7
Divide the highest order term in the dividend -725x2 by the highest order term in divisor x.
4x2-725x
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
Step 11.2.2.5.8
Multiply the new quotient term by the divisor.
4x2-725x
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
-725x2+725x
Step 11.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in -725x2+725x
4x2-725x
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
Step 11.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2-725x
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x
Step 11.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
4x2-725x
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x-625
Step 11.2.2.5.12
Divide the highest order term in the dividend 625x by the highest order term in divisor x.
4x2-725x+625
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x-625
Step 11.2.2.5.13
Multiply the new quotient term by the divisor.
4x2-725x+625
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x-625
+625x-625
Step 11.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in 625x-625
4x2-725x+625
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x-625
-625x+625
Step 11.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2-725x+625
x-14x3-729x2+1350x-625
-4x3+4x2
-725x2+1350x
+725x2-725x
+625x-625
-625x+625
0
Step 11.2.2.5.16
Since the remander is 0, the final answer is the quotient.
4x2-725x+625
4x2-725x+625
Step 11.2.2.6
Write 4x3-729x2+1350x-625 as a set of factors.
(x-1)(4x2-725x+625)=0
(x-1)(4x2-725x+625)=0
(x-1)(4x2-725x+625)=0
Step 11.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-1=0
4x2-725x+625=0
Step 11.4
Set x-1 equal to 0 and solve for x.
Tap for more steps...
Step 11.4.1
Set x-1 equal to 0.
x-1=0
Step 11.4.2
Add 1 to both sides of the equation.
x=1
x=1
Step 11.5
Set 4x2-725x+625 equal to 0 and solve for x.
Tap for more steps...
Step 11.5.1
Set 4x2-725x+625 equal to 0.
4x2-725x+625=0
Step 11.5.2
Solve 4x2-725x+625=0 for x.
Tap for more steps...
Step 11.5.2.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 11.5.2.2
Substitute the values a=4, b=-725, and c=625 into the quadratic formula and solve for x.
725±(-725)2-4(4625)24
Step 11.5.2.3
Simplify.
Tap for more steps...
Step 11.5.2.3.1
Simplify the numerator.
Tap for more steps...
Step 11.5.2.3.1.1
Raise -725 to the power of 2.
x=725±525625-4462524
Step 11.5.2.3.1.2
Multiply -44625.
Tap for more steps...
Step 11.5.2.3.1.2.1
Multiply -4 by 4.
x=725±525625-1662524
Step 11.5.2.3.1.2.2
Multiply -16 by 625.
x=725±525625-1000024
x=725±525625-1000024
Step 11.5.2.3.1.3
Subtract 10000 from 525625.
x=725±51562524
Step 11.5.2.3.1.4
Rewrite 515625 as 125233.
Tap for more steps...
Step 11.5.2.3.1.4.1
Factor 15625 out of 515625.
x=725±15625(33)24
Step 11.5.2.3.1.4.2
Rewrite 15625 as 1252.
x=725±12523324
x=725±12523324
Step 11.5.2.3.1.5
Pull terms out from under the radical.
x=725±1253324
x=725±1253324
Step 11.5.2.3.2
Multiply 2 by 4.
x=725±125338
x=725±125338
Step 11.5.2.4
The final answer is the combination of both solutions.
x=725+125338,725-125338
x=725+125338,725-125338
x=725+125338,725-125338
Step 11.6
The final solution is all the values that make (x-1)(4x2-725x+625)=0 true.
x=1,725+125338,725-125338
x=1,725+125338,725-125338
Step 12
Exclude the solutions that do not make log(8x)-log(1+x)=2 true.
x=725+125338
Step 13
The result can be shown in multiple forms.
Exact Form:
x=725+125338
Decimal Form:
x=180.38379135
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]