Enter a problem...
Precalculus Examples
log(8x)-log(1+√x)=2log(8x)−log(1+√x)=2
Step 1
Step 1.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
log(8x1+√x)=2log(8x1+√x)=2
Step 1.2
Multiply 8x1+√x8x1+√x by 1-√x1-√x1−√x1−√x.
log(8x1+√x⋅1-√x1-√x)=2log(8x1+√x⋅1−√x1−√x)=2
Step 1.3
Multiply 8x1+√x8x1+√x by 1-√x1-√x1−√x1−√x.
log(8x(1-√x)(1+√x)(1-√x))=2log(8x(1−√x)(1+√x)(1−√x))=2
Step 1.4
Expand the denominator using the FOIL method.
log(8x(1-√x)1-√x+√x-√x2)=2log(8x(1−√x)1−√x+√x−√x2)=2
Step 1.5
Simplify.
log(8x(1-√x)-x+1)=2log(8x(1−√x)−x+1)=2
log(8x(1-√x)-x+1)=2log(8x(1−√x)−x+1)=2
Step 2
Rewrite log(8x(1-√x)-x+1)=2log(8x(1−√x)−x+1)=2 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and bb≠≠11, then logb(x)=ylogb(x)=y is equivalent to by=x.
102=8x(1-√x)-x+1
Step 3
Cross multiply to remove the fraction.
8x(1-√x)=102(-x+1)
Step 4
Step 4.1
Raise 10 to the power of 2.
8x(1-√x)=100(-x+1)
Step 4.2
Apply the distributive property.
8x(1-√x)=100(-x)+100⋅1
Step 4.3
Multiply.
Step 4.3.1
Multiply -1 by 100.
8x(1-√x)=-100x+100⋅1
Step 4.3.2
Multiply 100 by 1.
8x(1-√x)=-100x+100
8x(1-√x)=-100x+100
8x(1-√x)=-100x+100
Step 5
Step 5.1
Add 100x to both sides of the equation.
8x(1-√x)+100x=100
Step 5.2
Simplify each term.
Step 5.2.1
Apply the distributive property.
8x⋅1+8x(-√x)+100x=100
Step 5.2.2
Multiply 8 by 1.
8x+8x(-√x)+100x=100
Step 5.2.3
Multiply -1 by 8.
8x-8x√x+100x=100
8x-8x√x+100x=100
Step 5.3
Add 8x and 100x.
-8x√x+108x=100
-8x√x+108x=100
Step 6
Step 6.1
Factor 4x out of -8x√x.
4x(-2√x)+108x=100
Step 6.2
Factor 4x out of 108x.
4x(-2√x)+4x(27)=100
Step 6.3
Factor 4x out of 4x(-2√x)+4x(27).
4x(-2√x+27)=100
4x(-2√x+27)=100
Step 7
Step 7.1
Divide each term in 4x(-2√x+27)=100 by 4.
4x(-2√x+27)4=1004
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of 4.
Step 7.2.1.1
Cancel the common factor.
4x(-2√x+27)4=1004
Step 7.2.1.2
Divide x(-2√x+27) by 1.
x(-2√x+27)=1004
x(-2√x+27)=1004
Step 7.2.2
Apply the distributive property.
x(-2√x)+x⋅27=1004
Step 7.2.3
Reorder.
Step 7.2.3.1
Rewrite using the commutative property of multiplication.
-2x√x+x⋅27=1004
Step 7.2.3.2
Move 27 to the left of x.
-2x√x+27x=1004
-2x√x+27x=1004
-2x√x+27x=1004
Step 7.3
Simplify the right side.
Step 7.3.1
Divide 100 by 4.
-2x√x+27x=25
-2x√x+27x=25
-2x√x+27x=25
Step 8
Subtract 27x from both sides of the equation.
-2x√x=25-27x
Step 9
To remove the radical on the left side of the equation, square both sides of the equation.
(-2x√x)2=(25-27x)2
Step 10
Step 10.1
Use n√ax=axn to rewrite √x as x12.
(-2x⋅x12)2=(25-27x)2
Step 10.2
Simplify the left side.
Step 10.2.1
Simplify (-2x⋅x12)2.
Step 10.2.1.1
Multiply x by x12 by adding the exponents.
Step 10.2.1.1.1
Move x12.
(-2(x12x))2=(25-27x)2
Step 10.2.1.1.2
Multiply x12 by x.
Step 10.2.1.1.2.1
Raise x to the power of 1.
(-2(x12x1))2=(25-27x)2
Step 10.2.1.1.2.2
Use the power rule aman=am+n to combine exponents.
(-2x12+1)2=(25-27x)2
(-2x12+1)2=(25-27x)2
Step 10.2.1.1.3
Write 1 as a fraction with a common denominator.
(-2x12+22)2=(25-27x)2
Step 10.2.1.1.4
Combine the numerators over the common denominator.
(-2x1+22)2=(25-27x)2
Step 10.2.1.1.5
Add 1 and 2.
(-2x32)2=(25-27x)2
(-2x32)2=(25-27x)2
Step 10.2.1.2
Apply the product rule to -2x32.
(-2)2(x32)2=(25-27x)2
Step 10.2.1.3
Raise -2 to the power of 2.
4(x32)2=(25-27x)2
Step 10.2.1.4
Multiply the exponents in (x32)2.
Step 10.2.1.4.1
Apply the power rule and multiply exponents, (am)n=amn.
4x32⋅2=(25-27x)2
Step 10.2.1.4.2
Cancel the common factor of 2.
Step 10.2.1.4.2.1
Cancel the common factor.
4x32⋅2=(25-27x)2
Step 10.2.1.4.2.2
Rewrite the expression.
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
4x3=(25-27x)2
Step 10.3
Simplify the right side.
Step 10.3.1
Simplify (25-27x)2.
Step 10.3.1.1
Rewrite (25-27x)2 as (25-27x)(25-27x).
4x3=(25-27x)(25-27x)
Step 10.3.1.2
Expand (25-27x)(25-27x) using the FOIL Method.
Step 10.3.1.2.1
Apply the distributive property.
4x3=25(25-27x)-27x(25-27x)
Step 10.3.1.2.2
Apply the distributive property.
4x3=25⋅25+25(-27x)-27x(25-27x)
Step 10.3.1.2.3
Apply the distributive property.
4x3=25⋅25+25(-27x)-27x⋅25-27x(-27x)
4x3=25⋅25+25(-27x)-27x⋅25-27x(-27x)
Step 10.3.1.3
Simplify and combine like terms.
Step 10.3.1.3.1
Simplify each term.
Step 10.3.1.3.1.1
Multiply 25 by 25.
4x3=625+25(-27x)-27x⋅25-27x(-27x)
Step 10.3.1.3.1.2
Multiply -27 by 25.
4x3=625-675x-27x⋅25-27x(-27x)
Step 10.3.1.3.1.3
Multiply 25 by -27.
4x3=625-675x-675x-27x(-27x)
Step 10.3.1.3.1.4
Rewrite using the commutative property of multiplication.
4x3=625-675x-675x-27⋅-27x⋅x
Step 10.3.1.3.1.5
Multiply x by x by adding the exponents.
Step 10.3.1.3.1.5.1
Move x.
4x3=625-675x-675x-27⋅-27(x⋅x)
Step 10.3.1.3.1.5.2
Multiply x by x.
4x3=625-675x-675x-27⋅-27x2
4x3=625-675x-675x-27⋅-27x2
Step 10.3.1.3.1.6
Multiply -27 by -27.
4x3=625-675x-675x+729x2
4x3=625-675x-675x+729x2
Step 10.3.1.3.2
Subtract 675x from -675x.
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
4x3=625-1350x+729x2
Step 11
Step 11.1
Move all the expressions to the left side of the equation.
Step 11.1.1
Subtract 625 from both sides of the equation.
4x3-625=-1350x+729x2
Step 11.1.2
Add 1350x to both sides of the equation.
4x3-625+1350x=729x2
Step 11.1.3
Subtract 729x2 from both sides of the equation.
4x3-625+1350x-729x2=0
4x3-625+1350x-729x2=0
Step 11.2
Factor the left side of the equation.
Step 11.2.1
Reorder terms.
4x3-729x2+1350x-625=0
Step 11.2.2
Factor 4x3-729x2+1350x-625 using the rational roots test.
Step 11.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±625,±5,±125,±25
q=±1,±4,±2
Step 11.2.2.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±0.25,±0.5,±625,±156.25,±312.5,±5,±1.25,±2.5,±125,±31.25,±62.5,±25,±6.25,±12.5
Step 11.2.2.3
Substitute 1 and simplify the expression. In this case, the expression is equal to 0 so 1 is a root of the polynomial.
Step 11.2.2.3.1
Substitute 1 into the polynomial.
4⋅13-729⋅12+1350⋅1-625
Step 11.2.2.3.2
Raise 1 to the power of 3.
4⋅1-729⋅12+1350⋅1-625
Step 11.2.2.3.3
Multiply 4 by 1.
4-729⋅12+1350⋅1-625
Step 11.2.2.3.4
Raise 1 to the power of 2.
4-729⋅1+1350⋅1-625
Step 11.2.2.3.5
Multiply -729 by 1.
4-729+1350⋅1-625
Step 11.2.2.3.6
Subtract 729 from 4.
-725+1350⋅1-625
Step 11.2.2.3.7
Multiply 1350 by 1.
-725+1350-625
Step 11.2.2.3.8
Add -725 and 1350.
625-625
Step 11.2.2.3.9
Subtract 625 from 625.
0
0
Step 11.2.2.4
Since 1 is a known root, divide the polynomial by x-1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
4x3-729x2+1350x-625x-1
Step 11.2.2.5
Divide 4x3-729x2+1350x-625 by x-1.
Step 11.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 |
Step 11.2.2.5.2
Divide the highest order term in the dividend 4x3 by the highest order term in divisor x.
4x2 | |||||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 |
Step 11.2.2.5.3
Multiply the new quotient term by the divisor.
4x2 | |||||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
+ | 4x3 | - | 4x2 |
Step 11.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in 4x3-4x2
4x2 | |||||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 |
Step 11.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | |||||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 |
Step 11.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
4x2 | |||||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x |
Step 11.2.2.5.7
Divide the highest order term in the dividend -725x2 by the highest order term in divisor x.
4x2 | - | 725x | |||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x |
Step 11.2.2.5.8
Multiply the new quotient term by the divisor.
4x2 | - | 725x | |||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
- | 725x2 | + | 725x |
Step 11.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in -725x2+725x
4x2 | - | 725x | |||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x |
Step 11.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | - | 725x | |||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x |
Step 11.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
4x2 | - | 725x | |||||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x | - | 625 |
Step 11.2.2.5.12
Divide the highest order term in the dividend 625x by the highest order term in divisor x.
4x2 | - | 725x | + | 625 | |||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x | - | 625 |
Step 11.2.2.5.13
Multiply the new quotient term by the divisor.
4x2 | - | 725x | + | 625 | |||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x | - | 625 | ||||||||
+ | 625x | - | 625 |
Step 11.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in 625x-625
4x2 | - | 725x | + | 625 | |||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x | - | 625 | ||||||||
- | 625x | + | 625 |
Step 11.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
4x2 | - | 725x | + | 625 | |||||||
x | - | 1 | 4x3 | - | 729x2 | + | 1350x | - | 625 | ||
- | 4x3 | + | 4x2 | ||||||||
- | 725x2 | + | 1350x | ||||||||
+ | 725x2 | - | 725x | ||||||||
+ | 625x | - | 625 | ||||||||
- | 625x | + | 625 | ||||||||
0 |
Step 11.2.2.5.16
Since the remander is 0, the final answer is the quotient.
4x2-725x+625
4x2-725x+625
Step 11.2.2.6
Write 4x3-729x2+1350x-625 as a set of factors.
(x-1)(4x2-725x+625)=0
(x-1)(4x2-725x+625)=0
(x-1)(4x2-725x+625)=0
Step 11.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-1=0
4x2-725x+625=0
Step 11.4
Set x-1 equal to 0 and solve for x.
Step 11.4.1
Set x-1 equal to 0.
x-1=0
Step 11.4.2
Add 1 to both sides of the equation.
x=1
x=1
Step 11.5
Set 4x2-725x+625 equal to 0 and solve for x.
Step 11.5.1
Set 4x2-725x+625 equal to 0.
4x2-725x+625=0
Step 11.5.2
Solve 4x2-725x+625=0 for x.
Step 11.5.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 11.5.2.2
Substitute the values a=4, b=-725, and c=625 into the quadratic formula and solve for x.
725±√(-725)2-4⋅(4⋅625)2⋅4
Step 11.5.2.3
Simplify.
Step 11.5.2.3.1
Simplify the numerator.
Step 11.5.2.3.1.1
Raise -725 to the power of 2.
x=725±√525625-4⋅4⋅6252⋅4
Step 11.5.2.3.1.2
Multiply -4⋅4⋅625.
Step 11.5.2.3.1.2.1
Multiply -4 by 4.
x=725±√525625-16⋅6252⋅4
Step 11.5.2.3.1.2.2
Multiply -16 by 625.
x=725±√525625-100002⋅4
x=725±√525625-100002⋅4
Step 11.5.2.3.1.3
Subtract 10000 from 525625.
x=725±√5156252⋅4
Step 11.5.2.3.1.4
Rewrite 515625 as 1252⋅33.
Step 11.5.2.3.1.4.1
Factor 15625 out of 515625.
x=725±√15625(33)2⋅4
Step 11.5.2.3.1.4.2
Rewrite 15625 as 1252.
x=725±√1252⋅332⋅4
x=725±√1252⋅332⋅4
Step 11.5.2.3.1.5
Pull terms out from under the radical.
x=725±125√332⋅4
x=725±125√332⋅4
Step 11.5.2.3.2
Multiply 2 by 4.
x=725±125√338
x=725±125√338
Step 11.5.2.4
The final answer is the combination of both solutions.
x=725+125√338,725-125√338
x=725+125√338,725-125√338
x=725+125√338,725-125√338
Step 11.6
The final solution is all the values that make (x-1)(4x2-725x+625)=0 true.
x=1,725+125√338,725-125√338
x=1,725+125√338,725-125√338
Step 12
Exclude the solutions that do not make log(8x)-log(1+√x)=2 true.
x=725+125√338
Step 13
The result can be shown in multiple forms.
Exact Form:
x=725+125√338
Decimal Form:
x=180.38379135…